您现在的位置: 天添资源网 >> 优秀教案 >> 数学教案 >> 高一 >> 正文 搜索:

圆的标准方程教案(新人教A版必修二)

作者:佚名 教案来源:网络 点击数:

圆的标准方程教案(新人教A版必修二)

本资料为WORD文档,请点击下载地址下载
文 章来 源天添 资源网 w w
w.tT z y W.c oM

第四章  圆与方程
本章教材分析
    上一章,学生已经学习了直线与方程,知道在直角坐标系中,直线可以用方程表示,通过方程,可以研究直线间的位置关系、直线与直线的交点坐标、点到直线的距离等问题,对数形结合的思想方法有了初步体验.本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究点与圆、直线与圆、圆与圆的位置关系,了解空间直角坐标系,以便为今后的坐标法研究空间的几何对象奠定基础,这些知识是进一步学习圆锥曲线方程、导数和微积分的基础,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力.
    通过方程,研究直线与圆、圆与圆的位置关系是本章的重点内容之一,坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法,通过坐标系把点和坐标、曲线和方程联系起来,实现了形和数的统一,因此在教学过程中,要始终贯穿坐标法这一重要思想,不怕反复.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后把运算结果“翻译”成相应的几何结论.这就是坐标法解决几何问题的三步曲.坐标法还可以与平面几何中的综合方法、向量方法建立联系,同时可以推广到空间,解决立体几何问题.
本章教学时间约需9课时,具体分配如下(仅供参考):
4.1.1 圆的标准方程 1课时
4.1.2 圆的一般方程 1课时
4.2.1 直线与圆的位置关系 2课时
4.2.2 圆与圆的位置关系 2课时
4.3.1 空间直角坐标系 1课时
4.3.2 空间两点间的距离公式 1课时
 本章复习 1课时


4.1  圆的方程
4.1.1  圆的标准方程
整体设计
教学分析
    在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.
三维目标
1.使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,注意培养学生观察问题、发现问题和解决问题的能力.
2.会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣,培养学生分析、概括的思维能力.
3.理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义观点,欣赏和体验圆的对称性,感受数学美.
重点难点
教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.
教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.
课时安排
1课时
教学过程
导入新课
思路1.课前准备:(用淀粉在一张白纸上画上海和山)
说明:在白纸上要表演的是一个小魔术,名称是《日出》,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.
课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).
然后上升到数学层次:
不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.
从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.
那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.
思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.
推进新课
新知探究
提出问题
①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?
②具有什么性质的点的轨迹称为圆?
③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?
 
图1
④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?
⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?
⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?
讨论结果:①根据两点之间的距离公式 ,得
|AB|= ,
|CD|= .
②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).
③圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.
④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了.
⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a、b、r都是常数,r>0).设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件 =r.①
将上式两边平方得(x-a)2+(y-b)2=r2.
化简可得(x-a)2+(y-b)2=r2.②
若点M(x,y)在圆上,由上述讨论可知,点M的坐标满足方程②,反之若点M的坐标满足方程②,这就说明点M与圆心C的距离为r,即点M在圆心为C的圆上.方程②就是圆心为C(a,b),半径长为r的圆的方程,我们把它叫做圆的标准方程.
⑥这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x2+y2=r2.
提出问题
①根据圆的标准方程说明确定圆的方程的条件是什么?
②确定圆的方程的方法和步骤是什么?
③坐标平面内的点与圆有什么位置关系?如何判断?
讨论结果:①圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,只要求出a、b、r且r>0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.
②确定圆的方程主要方法是待定系数法,即列出关于a、b、r的方程组,求a、b、r或直接求出圆心(a,b)和半径r,一般步骤为:
1°根据题意,设所求的圆的标准方程(x-a)2+(y-b)2=r2;
2°根据已知条件,建立关于a、b、r的方程组;
3°解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程.
③点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:
当点M(x0,y0)在圆(x-a)2+(y-b)2=r2上时,点M的坐标满足方程(x-a)2+(y-b)2=r2.
当点M(x0,y0)不在圆(x-a)2+(y-b)2=r2上时,点M的坐标不满足方程(x-a)2+(y-b)2=r2.
用点到圆心的距离和半径的大小来说明应为:
1°点到圆心的距离大于半径,点在圆外 (x0-a)2+(y0-b)2>r2,点在圆外;
2°点到圆心的距离等于半径,点在圆上 (x0-a)2+(y0-b)2=r2,点在圆上;
3°点到圆心的距离小于半径,点在圆内 (x0-a)2+(y0-b)2<r2,点在圆内.
应用示例
思路1
例1  写出下列各圆的标准方程:
(1)圆心在原点,半径是3;
⑵圆心在点C(3,4),半径是 ;
(3)经过点P(5,1),圆心在点C(8,-3);
(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.
解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x2+y2=9.
(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.
(3)方法一:圆的半径r=|CP|= =5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.
方法二:设圆的标准方程为(x-8)2+(y+3)2=r2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r2,r2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.
    这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.
(4)设圆的标准方程为(x-1)2+(y-3)2=r2,由圆心到直线的距离等于圆的半径,所以r= .因此所求圆的标准方程为(x-1)2+(y-3)2= .
点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.
例2  写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(- ,-1)是否在这个圆上.
解:圆心为A(2,-3),半径长等于5的圆的标准方程是
(x-2)2+(y+3)2=25,
把点M1(5,-7),M2(- ,,-1)分别代入方程(x-2)2+(y+3)2=25,
则M1的坐标满足方程,M1在圆上.M2的坐标不满足方程,M2不在圆上.
点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.
例3  △ABC的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.
活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r2入手,要确定圆的标准方程,可用待定系数法确定a、b、r三个参数.另外可利用直线AB与AC的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.
解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r2,因为A(5,1),B(7,-3),C(2,-8)都在圆上,
它们的坐标都满足方程(x-a)2+(y-b)2=r2,于是
 
解此方程组得 所以△ABC的外接圆的方程为(x-2)2+(y+3)2=25.
解法二:线段AB的中点坐标为(6,-1),斜率为-2,所以线段AB的垂直平分线的方程为y+1= (x-6).                                                                  ①
同理线段AC的中点坐标为(3.5,-3.5),斜率为3,所以线段AC的垂直平分线的方程为y+3.5=3(x-3.5).                                                                 ②
解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r= =5,所以△ABC的外接圆的方程为(x-2)2+(y+3)2=25.
点评:△ABC外接圆的圆心是△ABC的外心,它是△ABC三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.
思路2
例1  图2是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20 m,拱高OP=4 m,在建造时每隔4 m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01 m).
 
图2
解:建立坐标系如图,圆心在y轴上,由题意得P(0,4),B(10,0).
设圆的方程为x2+(y-b)2=r2,因为点P(0,4)和B(10,0)在圆上,
所以 解得
所以这个圆的方程是x2+(y+10.5)2=14.52.
设点P2(-2,y0),由题意y0>0,代入圆方程得(-2)2+(y0+10.5)2=14.52,
解得y0= -10.5≈14.36-10.5=3.86(m).
答:支柱A2P2的长度约为3.86 m.
例2  求与圆x2+y2-2x=0外切,且与直线x+ y=0相切于点(3,- )的圆的方程.
活动:学生审题,注意题目的特点,教师引导学生利用本节知识和初中学过的几何知识解题.首先利用配方法,把已知圆的方程写成标准方程,再利用两圆外切及直线与圆相切建立方程组,求出参数,得到所求的圆的方程.
解:设所求圆的方程为(x-a)2+(y-b)2=r2.圆x2+y2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即 =r+1,                           ①
由圆与直线x+ y=0相切于点(3,- ),得
解得a=4,b=0,r=2或a=0,b=-4 ,r=6.
故所求圆的方程为(x-4)2+y2=4或x2+(y+4 )2=36.
点评:一般情况下,如果已知圆心(或易于求出)或圆心到某一直线的距离(或易于求出),可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.
变式训练
    一圆过原点O和点P(1,3),圆心在直线y=x+2上,求此圆的方程.
解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a,a+2).
则圆的方程为(x-a)2+(y-a-2)2=r2.
因为点O(0,0)和P(1,3)在圆上,
所以 解得
所以所求的圆的方程为(x+ )2+(y- )2= .
解法二:由题意:圆的弦OP的斜率为3,中点坐标为( , ),
所以弦OP的垂直平分线方程为y- =- (x- ),即x+3y-5=0.
因为圆心在直线y=x+2上,且圆心在弦OP的垂直平分线上,
所以由 解得 ,即圆心坐标为C(- , ).
又因为圆的半径r=|OC|= ,
所以所求的圆的方程为(x+ )2+(y- )2= .
点评:(1)圆的标准方程中有a、b、r三个量,要求圆的标准方程即要求a、b、r三个量,有时可用待定系数法.
(2)要重视平面几何中的有关知识在解题中的运用.
例3  求下列圆的方程:
(1)圆心在直线y=-2x上且与直线y=1-x相切于点(2,-1).
(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.
解:(1)设圆心坐标为(a,-2a),由题意知圆与直线y=1-x相切于点(2,-1),所以 ,解得a=1.所以所求圆心坐标为(1,-2),半径r= = .所以所求圆的标准方程为(x-1)2+(y+2)2=2.
(2)设圆的方程为(x-2)2+(y+1)2=r2(r>0),由题意知圆心到直线y=x-1的距离为d= = .又直线y=x-1被圆截得弦长为2 ,所以由弦长公式得r2-d2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.
点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.
知能训练
课本本节练习1、2.
拓展提升
1.求圆心在直线y=2x上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.
活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.
解:首先两平行线的距离d= =2,所以半径为r= =1.
方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d= ,得 ,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x组成的方程组 得 ,因此圆心坐标为( , ).又半径为r=1,所以所求圆的方程为(x- )2+(y- )2=1.
方法二:解方程组 因此圆心坐标为( , ).又半径r=1,所以所求圆的方程为(x- )2+(y- )2=1.
点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.
课堂小结
①圆的标准方程.
②点与圆的位置关系的判断方法.
③根据已知条件求圆的标准方程的方法.
④利用圆的平面几何的知识构建方程.
⑤直径端点是A(x1,y1)、B(x2,y2)的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.
作业
1.复习初中有关点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系有关内容.
2.预习有关圆的切线方程的求法.
3.课本习题4.1  A组第2、3题.


 

文 章来 源天添 资源网 w w
w.tT z y W.c oM