1.2有理数1.2.4绝对值义务教育教科书数学七年级上册
查学诊断1、5的相反数是();2、-5的相反数是();3、0的相反数是();4、5.57的相反数是();5、的相反数是();6、的相反数是();
示标导入例:看图回答问题.小红和小明从同一处O出发,分别向东、西方向行驶10m,到达A,B两处,它们的行驶路线相同吗?它们的行驶路程相同吗?结论:它们的行驶路线不同,行驶路程相同.
绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作.导学施教观察下面数轴上的点,表示-3的点到原点的距离是多少?表示3的点呢?-2和2呢?例如上面的问题中在数轴上表示-3的点和表示3的点到原点的距离都是3,所以3和-3的绝对值都是3,即|-3|=|3|=3.你能说说-2和2吗?
思考星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、自己家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
1.-2的绝对值是____,说明数轴上表示-2的点到____的距离是____个长度单位.2.-0.8的绝对值是____.3.口答:练习,讨论,归纳.
教师引导,学生归纳:(1)一个正数的绝对值是它本身;(2)一个负数的绝对值是它的相反数;(3)0的绝对值是0.问题:结合上面例题结果,你能从中发现什么规律?
问题:小组讨论下面3个问题:(1)有没有绝对值等于-2的数?(2)一个数的绝对值会是负数吗?为什么?(3)不论有理数a取何值,它的绝对值总是什么数?不论有理数a取何值,它的绝对值总是正数或0(非负数),即对任意有理数a,总有≥0
问题:互为相反数的两个数的绝对值有什么关系?学生观察讨论:一对相反数虽然分别在原点两边,但它们到原点的距离是相等的.学生归纳结论:互为相反数的两个数的绝对值相等.例:1、=(4);2、=(4);利用数轴观察
思考(教科书第12页)1.题目中涉及到14个不同的气温,你能把这14个数用数轴上的点表示出来吗?2.最低气温是多少?最高气温是多少?
3.你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.
1.正数大于0,0大于负数,正数大于负数;2.两个负数,绝对值大的反而小.问题:对于正数、0和负数这三类数,它们之间有什么大小关系?(请同学们小组讨论,利用数轴探究结论!)完成下列习题。(填大于、小于或等于)63;60;03;0-3;0-6;-6-3;0-37;25-36;0-15;
练测促学练习.判断并改错(1)一个数的绝对值等于本身,则这个数一定是正数;(2)一个数的绝对值等于它的相反数,则这个数一定是负数;(3)如果两个数的绝对值相等,那么这两个数一定相等;(4)如果两个数不相等,那么这两个数的绝对值一定不相等;(5)有理数的绝对值一定是非负数;(6)两个有理数比大小,绝对值大的反而小.
探究:拓展延伸
课堂小结说说你对绝对值的认识?有理数怎样比较大小?师生共同归纳:(1)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0(2)若a为有理数,则|a|≥0
(3)零作为一个特殊的数,有它特殊的属性:绝对值最小的数、相反数是它本身、绝对值是它本身.(4)有理数比较大小的方法:方法1.数轴上表示的两个数,右边的总比左边的大;方法2.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.
作业:教科书习题1.2第5,6,7,8题.
下节课我们继续学习!再见