部编版语文四年级上册第三次月考试卷含答案
加入VIP免费下载

部编版语文四年级上册第三次月考试卷含答案

ID:1260165

大小:218.9 KB

页数:8页

时间:2022-12-03

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
部编八年级数学(上)期末试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项符合题目要求的.)1.(2分)若分式的值为0,则x的值为(  )A.x=﹣3       B.x=2       C.x≠﹣3       D.x≠22.(2分)下列计算正确的是(  )A.a2+a3=a5       B.a3•a3=a9       C.(a3)2=a6       D.(ab)2=ab23.(2分)下列因式分解结果正确的是(  )A.x2+3x+2=x(x+3)+2       B.4x2﹣9=(4x+3)(4x﹣3)      C.a2﹣2a+1=(a+1)2       D.x2﹣5x+6=(x﹣2)(x﹣3)4.(2分)以下四家银行的行标图中,是轴对称图形的有(  )A.1个       B.2个       C.3个       D.4个5.(2分)等腰三角形的一个角为50°,则这个等腰三角形的底角为(  )A.65°       B.65°或80°       C.50°或65°       D.40°6.(2分)三角形的三边长可以是(  )A.2,11,13       B.5,12,7       C.5,5,11       D.5,12,137.(2分)如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为(  )A.2       B.3       C.4       D.5 8.(2分)如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为(  )A.13       B.16       C.8       D.109.(2分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为(  )A.5       B.6       C.7       D.810.(2分)如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE;其中正确的有(  )A.1个       B.2个       C.3个       D.4个二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)要使分式有意义,则x的取值范围为     .12.(3分)若x2+mx+16=(x+n)2,则常数m=     . 13.(3分)如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD的长为     .14.(3分)已知一个凸多边形的每个内角都是150°,则它的边数为     .15.(3分)已知m+2n﹣2=0,则2m•4n的值为     .16.(3分)如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=4.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是     .三、解答题(本大题共7题,共62分,解答应写出文字说明、证明过程或演算步骤,17.(8分)计算:(1)•(6x2y)2;(2)(a+b)2+b(a﹣b).18.(8分)分解因式:(1)ax2﹣9a;(2)4ab2﹣4a2b﹣b3.19.(8分)计算:(1)+;(2)÷(1﹣). 20.(8分)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.21.(10分)如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.22.(10分)列方程解应用题:初二(1)班组织同学乘大巴车前往爱国教育基地开展活动,基地离学校有60公里,队伍12:00从学校出发,张老师因有事情,12:15从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地,问:(1)大巴与小车的平均速度各是多少?(2)张老师追上大巴的地点到基地的路程有多远?23.(10分)如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?  参考答案一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项符合题目要求的.)1.A;2.C;3.D;4.C;5.C;6.D;7.B;8.A;9.A;10.C;二、填空题(本大题共6小题,每小题3分,共18分.)11.x≠﹣2;12.±8;13.3;14.12;15.4;16.;三、解答题(本大题共7题,共62分,解答应写出文字说明、证明过程或演算步骤,17【解答】解:(1)•(6x2y)2;=•(36x4y2)=12x3y2.(2)(a+b)2+b(a﹣b)=a2+2ab+b2+ab﹣b2=a2+3ab.18【解答】解:(1)原式=a(x2﹣9)=a(x+3)(x﹣3);(2)原式=﹣b(b2﹣4ab+4a2)=﹣b(2a﹣b)2.19【解答】解:(1)原式=﹣==1;(2)原式=•=.20【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5, ∴EB==4,∴CB=4+5=9.21【解答】解:(1)如图所示:△A1B1C1即为所求,A1(2,﹣4),B1(3,﹣1),C1(﹣2,1).(2)S△ABC=5×5﹣×4×5﹣×1×3﹣×2×5=.22【解答】解:(1)设大巴的平均速度是x公里/小时,则小车的平均速度是1.5x公里/小时,根据题意得:=++,解得:x=40,经检验:x=40是原方程的解,1.5x=1.5×40=60.答:大巴的平均速度是40公里/小时,小车的平均速度是60公里/小时;(2)设张老师追上大巴的地点到基地的路程有y公里,根据题意得:+=,解得:y=30,答:张老师追上大巴的地点到基地的路程有30公里.23【解答】解:(1)①△BPD与△CQP全等, 理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s后,BP=4cm,CQ=4cm,∴BP=CQ,CP=6cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS),②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵△BPD与△CQP全等,∠B=∠C,∴BP=PC=BC=5cm,BD=CQ=6cm,∴t=,∴点Q的运动速度==cm/s,∴当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:x﹣2x=36,解得:x=90,∴90﹣()×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.

资料: 2867

进入主页

人气:

10000+的老师在这里下载备课资料