2017年桃江县高二数学下期末检测题(理带答案)
加入VIP免费下载

本文件来自资料包: 《2017年桃江县高二数学下期末检测题(理带答案)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2016—2017学年度第二学期期末考试试卷 高二理科数学 ‎(时量:120分钟 满分:150分)‎ 一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.已知为虚数单位,则( )‎ A. B. C. D.‎ ‎2.若,且≤19,则(20-n)(21-n)……(100-n)等于( )‎ A. B.  C.   D.‎ ‎3.在一次试验中事件A出现的概率为,则在次独立重复试验中出现次的概率 ( )‎ A. 1- B. ‎ C. 1- D. ‎ ‎4.在相关分析中,对相关系数,下列说法正确的是( )‎ A.越大,线性相关程度越强 ‎ B.越小,线性相关程度越强 ‎ C.越大,线性相关程度越弱,越小,线性相关程度越强 ‎ D.且越接近,线性相关程度越强,越接近,线性相关程度越弱 ‎5 .某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据如下表:根据表中数据得到≈15.968,‎ 因为≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) ‎ 附表:‎ ‎0.050‎ ‎0.010‎ ‎0.001‎ ‎3.841‎ ‎6.635‎ ‎10.828‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.0.1 B.0.05 C.0.01 D.0.001‎ ‎6. 五位同学去听同时进行的4个课外知识讲座,每个同学可自由选择,则不同的选择种数是( )‎ A.54 B.5×4×3×2 C.45 D.5×4‎ ‎7.用反证法证明命题:若整系数一元二次方程有有理根,那么中至少有一个是偶数时,下列假设中正确的是( )‎ A.假设都是偶数 B.假设都不是偶数 C.假设至多有一个是偶数 D.假设至多有两个是偶数 ‎8.曲线在处的切线的倾斜角是 ( )‎ A. B. C. D. ‎ ‎9.设袋中有80个红球,20个白球.若从袋中任取10个球,则其中恰好有6个红球的概率为( )‎ ‎ A. B. C. D.‎ ‎10.四名师范毕业生全部分配到3所中学任教,每校至少有1名,则不同的分配方‎2010年上学期期中考试试卷·高二·数学(理) 第 2 页,共 4 页 案有 ( )‎ A. 18种 B. 36种 C. 54种 D. 72种 ‎11.随机变量服从正态分布,则下列结论不正确的是( )‎ A. ‎ B.‎ C. ‎ D.‎ ‎12.函数,则的值为( )‎ A.-20 B.-10 C.10 D.20‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 二、填空题:本大题共4小题,每小题5分,共20分.‎ ‎13.设随机变量等可能取1,2,3,...,这个值,如果,则等于 . ‎ ‎14.定理:“平行于同一直线的两直线平行”,可用符号语言表示为:‎ ‎“∵,,∴”,这个推理称为 . ‎ ‎(填“归纳推理”、“类比推理”、“演绎推理”之一)‎ ‎15. .‎ ‎16.已知是各项系数均为整数的多项式,,且满足 ‎1,3,5‎ ‎,则的各项系数之和为 . ‎ 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)‎ ‎17. (本小题满分10分)‎ 现有2名男生和3名女生.‎ ‎(Ⅰ)若其中2名男生必须相邻排在一起,则这5人站成一排,共有多少种不同的排法?‎ ‎(Ⅱ)若男生甲既不能站排头,也不能站排尾, 这5人站成一排,共有多少种不同的排法?‎ ‎18. (本小题满分12分)‎ ‎(Ⅰ) 比较下列两组实数的大小:‎ ‎① -1与2-; ② 2-与-;‎ ‎(Ⅱ) 类比以上结论,写出一个更具一般意义的结论,并给出证明.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎19.(本小题满分12分)‎ 在二项式的展开式中,‎ ‎(Ⅰ)写出其中含的项;‎ ‎(Ⅱ)如果第项和第项的二项式系数相等,求的值.‎ ‎20. (本小题满分12分)‎ 如图,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.‎ M N P C ‎1‎ B ‎1‎ B C A A ‎1‎ ‎(Ⅰ)求证:PN⊥AM;‎ ‎(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角 最大.‎ ‎21.(本小题满分12分)‎ 设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).‎ ‎(Ⅰ)求方程有实根的概率;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(Ⅱ)求的分布列和数学期望; ‎ ‎(Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.‎ ‎22.(本小题满分12分)‎ ‎ 已知函数,为正常数.‎ ‎ (Ⅰ) 若,且,求函数的单调增区间;‎ ‎ (Ⅱ) 若,且对任意,,都有,求的的取值范围.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2016—2017学年度第二学期期末考试试卷 高二数学(理)参考答案 一、选择题:本大题共12小题,每小题5分,共60分. ‎ ‎1.D 2.C 3.D 4. D 5. D 6. C ‎ ‎7.B 8.D 9.B 10.B 11.C 12.A 二、填空题:本大题共4小题,每小题5分,共20分. ‎ ‎13.10 14.演绎推理 15.1 16.5‎ 三、解答题:本大题共6小题,共70分. ‎ ‎17.解:(1) ………………………5分 ‎(2) ………………………10分 ‎18. (本小题满分12分)‎ ‎ (Ⅰ) 解法一: ‎ ‎① (+)2-(2+1)2=2-4>0.‎ 故+>2+1,即-1>2-. ‎ ‎② (2+)2-(+)2=4-2=2-2>0.‎ 故2+>+ ,即2->-. ‎ 解法二:分子有理化,略 ‎………………………6分 ‎(Ⅱ) 一般结论:若n是正整数,则->-. ‎ 或:函数在上单调递减;‎ 或:若正数满足:,且,‎ 则 ‎ 证明从略. ………………………12分 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎19.(本小题满分12分)‎ 解:(1)=‎ 令10-k=2得k=6 ‎ ‎∴含的项是==13440x2.…………6分 M N P C ‎1‎ B ‎1‎ B C A A ‎1‎ ‎(2)∵.‎ ‎∴3r-1=r+1或 r-1+r+1=10‎ ‎∴r=1或r=舍去.‎ ‎∴r=1 . …………12分 ‎20. (本小题满分12分)‎ 方法一:几何法 ‎ (Ⅰ) 取AC的中点Q,连结A1Q,易知AM⊥A1Q,‎ 又PN在平面A‎1C内的射影为A1Q,所以AM⊥PN. ………………6分 ‎ (Ⅱ) 作PD⊥AB于D,连结DN,则为直 线PN和平面ABC所成的角。易知当ND最短即ND⊥AB 时,最大,从而最大,此时D为AB的中点,P为A1B1的中点。‎ ‎………………………12分 方法二:向量法,略。‎ ‎21.(本小题满分12分)‎ ‎【解】(I)基本事件总数为,‎ 若使方程有实根,则,即.‎ 当时,;‎ 当时,;‎ 当时,;‎ 当时,;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 当时,;‎ 当时,,‎ 目标事件个数为 因此方程 有实根的概率为…………………4分 ‎(II)由题意知,,则 ‎,,‎ 故的分布列为 ‎0‎ ‎1‎ ‎2‎ P 的数学期望…………………8分 ‎(III)记“先后两次出现的点数中有‎5”‎为事件M,“方程有实根” 为事件N,则,,.…………12分 ‎22、(本小题满分12分 解:(1) ,…………………………… 2分 ‎ ∵,令,得,或, ……………………… …3分 ‎ ∴函数的单调增区间为, . ……………………… 4分 ‎ (2)∵,∴,‎ ‎∴,…………………………… ………………… 5分 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 设,依题意,在上是减函数.‎ 当时, ,,‎ 令,得:对恒成立,‎ 设,则,‎ ‎∵,∴,‎ ‎∴在上是增函数,则当时,有最大值为,‎ ‎∴. …………………………… ………………………………………… 9分 当时, ,,‎ 令,得: ,‎ ‎ 设,则,‎ ‎ ∴在上是增函数,∴,‎ 高三理科数学参考答案第5页(共5页)‎ ‎ ∴,综上所述, …………………………………………………12分 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料