圆柱的体积一教学内容小学数学第十二册课本第19、20页例5、例6及补充例题,完成“做一做”及练习三第1-4题。二教学目标1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。2、初步学会用转化的数学思想和方法,解决实际问题的能力,渗透转化思想,培养学生的自主探索意识。3、提高学生比较、分析、判断的能力.三学情分析六年级学生发现问题、解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已经掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察、比较、操作等方法。组织学生探索规律,归纳总结,体验知识的生成和形成。四教学重点、难点1、掌握圆柱体积的计算公式。2、圆柱体积的计算公式的推导。五教具准备课件六教学过程
(一)复习1、长方体的体积公式是什么?2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求?3、复习圆面积计算公式。(二)新授1、圆柱体积计算公式的推导。(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)2、教学补充例题(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?(2)指名学生分别回答下面的问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)(3)出示下面几种解答方案,让学生判断哪个是正确的.
①V=Sh50×2.1=105(立方厘米) 答:它的体积是105立方厘米。②2.1米=210厘米50×210=10500(立方厘米) 答:它的体积是10500立方厘米。③50平方厘米=0.5平方米0.5×2.1=1.05(立方米) 答:它的体积是1.05立方米。④50平方厘米=0.005平方米0.005×2.1=0.0105(立方米) 答:它的体积是0.0105立方米。先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.(4)做第20页的“做一做”。学生独立做在练习本上,做完后集体订正.3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)4、教学例6(1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(2)学生尝试完成例6。
第一种解法:第二种解法:①杯子的底面积:V=πr2hS=πr2=3.14×(8÷2)2×10=3.14×(8÷2)2=3.14×42×10=3.14×42=3.14×16×10=3.14×16=50.24×10=50.24(cm2)=502.4(cm3)②杯子的容积:=502.4(ml)50.24×10答:它的体积是502.4ml。=502.4(cm3)=502.4(ml)答:它的体积是502.4ml。5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)(三)巩固练习1、做第21页练习三的第1题.2、练习三的第2题.这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。(四)小结圆柱的体积=底面积×高(用字母表示为:V=Sh或V=πr2h)
(五)布置作业练习三第3、4题。板书:圆柱的体积圆柱的体积=底面积×高用字母表示为:V=Sh或V=πr2h例6:第一种解法:第二种解法:①杯子的底面积:V=πr2hS=πr2=3.14×(8÷2)2×10=3.14×(8÷2)2=3.14×42×10=3.14×42=3.14×16×10=3.14×16=50.24×10=50.24(cm2)=502.4(cm3)②杯子的容积:=502.4(ml)50.24×10答:它的体积是502.4ml。=502.4(cm3)=502.4(ml)答:它的体积是502.4ml。