《圆柱的体积(1)》教学设计教学内容:课本第25页例5、第26页例6及做一做,练习五相关练习。教学目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。教学重点:掌握圆柱的体积公式,并能运用其解决简单实际问题。教学难点:理解圆柱体积公式的推导过程。教学过程:一、创设情境,复习导入1.口头回答。(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?(板书:圆柱的体积(1))一、探索交流,解决问题。1.教学圆柱体积公式的推导。(1)教师演示。把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。(2)学生利用学具操作。(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。(6)推导圆柱的体积公式。①学生分组讨论:圆柱的体积怎样计算?②学生汇报讨论结果,并说明理由。教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。教师板书:(7)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?教师板书:V=πr2h。2.教学例6。
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?学生:应先知道杯子的容积。(2)学生尝试完成例6。①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)②杯子的容积:50.24×10=502.4(cm3)=502.4(mL)因为502.4大于498,所以杯子能装下这袋牛奶。三、巩固应用,内化提高1.课本第25页“做一做”。2.课本第26页“做一做”。3.课本第28页练习五的第1、3、4题。四、回顾整理,反思提升通过这节课的学习,你有什么收获?你有什么感受?