圆柱的体积一、学情分析:根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。二、教学目标:1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。2.通过圆柱体体积公式的推导,培养学生的分析推理能力。3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。三、教学重点:圆柱体体积的计算四、教学难点:圆柱体体积公式的推导五、教学用具:圆柱体学具、课件六、教学过程:(一)、复习引新1.复习长方体、正方体的体积公式。(板书:长方体的体积=底面积×高)
2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。(二)、探索新知1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。3.学生动手操作,在小组内交流:(与拼成的图形比较)(1)、什么变了?什么不变?(2)、拼成的图形的底面积与原来圆柱的底面积有什么关系?(3)、拼成的图形的高与原来的圆柱的高有什么关系?(4)、推导出圆柱的体积等于什么?4.学生汇报探讨的结果。5.教师演示圆柱体积公式推导演示教具:把圆柱的底面分成16个相等的扇形,后把圆柱切开,拼成近似的长方体;分细点,分成32等分、64等分越来越接近于长方体!(分成的扇形越多,拼成的立体图形就越接近于长方体。)你能根据这个实验得出圆柱的体积计算公式吗?让学生总结:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积×高(板书:圆柱的体积=底面积×高)用字母表示:(板书:V=Sh)
6.小结。圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?7.教学算一算审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)教学“试一试”小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。三、巩固练习四、课堂小结这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。