《乘法交换律和乘法结合律》教学设计——四年级数学“同课异构”后的教学设计教学目的:1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。2、体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。教学重点:引导学生概括出乘法结合律,并运用乘法结合律进行简便计算。教学难点:乘法结合律的推导过程是学习的难点教学过程。教学过程:一、复习导入1、复习:48+36=36+120+32+8=120++163+50+37=(+)+你运用了加法的什么运算规律?将加法交换律、结合律说给同学们听听。用字母如何表示加法交换律、结合律呢?板书:a+b=b+aa+b+c=a+(b+c)2、设疑导入:乘法是相同加数连加的简便计算,那么,请大家猜想一下,在乘法中,还存在不存在类似的运算律呢?如果存在的话,它们又叫什么名称呢?二、自学例1,探索乘法交换律学生独立学习后用自己的话说说乘法交换律是怎样的。生1:交换两个因数的位置,积不变。生2:a×b=b×a1、验证这条规律到底对不对,我们需要进行验证。(学生进行验证。)2、、汇报学生展示验证过程。引导学生用因为……所以进行描述。规范学生语言的同时,规范学生的格式。3结论师小结:交换两个因数的位置,积不变。这叫做乘法交换律。4、公式用自己喜欢的方式把乘法交换律表示出来。师:通常我们会用字母表示。a×b=b×a5、练习(1)请同学们应用运算定律填一填。并说说你的想法。96×35=35×()()×()=a×4834×()=52×()()×()=()×()(2)其实乘法交换律同学们很早就接触到了,还记得起来吗?生:验算师明确:
两个数相乘,算出得数后。我们可以用除法验算,也可以交换两个因数的位置再次计算,如果乘得的积与原来的得数相同,说明原先的计算是正确的。这种验算方法就是利用了——乘法交换律。三、自学例2:探索乘法结合律学生独立学习后用自己的话说说乘法结合律是怎样的呢?生1:先乘前两个数,或者先乘后两个数,积不变。生2:(a×b)×c=a×(b×c)1、验证这条规律到底对不对,我们需要进行验证。(学生进行验证。)2、汇报学生展示验证过程。3、结论师小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。4、公式用字母该如何表示呢?生:(a×b)×c=a×(b×c)5、练习请同学们利用定律填一填。(13×6)×5=13×(×)4×(25×9)=(4×)×四、比较乘法与加法的运算定律这节课我们学习了乘法的交换律和结合律。现在请同学们比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。五、当堂检测:1、把相等的两个算式用线连起来。18×36a×95(45×2)×5a×(25×c)20×25×4×595×a45×(2×5)(a×c)×25(20×5)×(25×4)36×182、课本P37第2题:根据乘法交换律和结合律在里填上合适的数。3、你能用简便方法计算吗?并说一说运用了什么运算定律。23×15×25×37×247×2×55×(4×11)39×5×46×(27×5)5、想挑战吗?25×9×125×4×8
《乘法交换律和乘法结合律》学练稿教学内容:P34例1、例2教学重点:引导学生概括出乘法结合律,并运用乘法结合律进行简便计算。教学难点:乘法结合律的推导过程。教学过程:一、复习48+36=36+120+32+8=120++163+50+37=(+)+你运用了加法的什么运算规律?说给同学们听听。用字母表示加法交换律:_____________________________加法结合律:________________________________一、自学例11、用自己的话说一说乘法交换律:_____________________________________________。2、举例验证:①②3、用自己喜欢的方式表示乘法交换律。用符号表示:用字母表示:用其他方法表示:4、练习(1)应用运算定律填一填,并说说你的想法。96×35=35×()()×()=a×4834×()=52×()()×()=()×()(2)完成课本P35“做一做”第1题,运用乘法交换律进行验算。34验算:126验算:×16×37—————————三、自学例21、用自己的话说一说乘法结合律:___________________________________________________________________________________________________________________________。2、举例验证:①②3、用字母表示乘法结合律:
4、练习填一填,并说说你的想法。(13×6)×5=13×(___×___)4×(25×9)=(4×___)×___四、当堂检测:1、把相等的两个算式用线连起来。18×3695×aa×9545×(2×5)(45×2)×5(a×c)×25a×(25×c)(20×5)×(25×4)20×25×4×536×182、课本P37第2题:根据乘法交换律和结合律在里填上合适的数。46×=×3232×4×25=×(×)×40×(63×25)=(×)×5×8×125×20=(×)×(×)3、你能用简便方法计算吗?并说一说运用了什么运算定律。23×15×25×37×247×2×55×(4×11)39×5×46×(27×5)5、想挑战吗?25×9×125×4×8