牛顿运动定律经典题解析一、夯实基础知识1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式.对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,,,;(4)牛顿第二定律定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即.3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即,当时,,即物体处于完全失重。6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。二、解析典型问题问题1:必须弄清牛顿第二定律的矢量性。牛顿第二定律是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。1.如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的,则人与梯面间的摩擦力是其重力的多少倍?问题2:必须弄清牛顿第二定律的瞬时性。牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。2.如图2(a)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态。现将l2线剪断,求剪断瞬时物体的加速度。(l)下面是某同学对该题的一种解法:分析与解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在三力作用下保持平衡,有T1cosθ=mg,T1sinθ=T2,T2=mgtanθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度。因为,所以加速度,方向在T2反方向。你认为这个结果正确吗?请对该解法作出评价并说明理由。(2)若将图2(a)中的细线第7页
改为长度相同、质量不计的轻弹簧,如图2(b)所示,其他条件不变,求解的步骤和结果与(l)完全相同,即,你认为这个结果正确吗?请说明理由。问题3:必须弄清牛顿第二定律的独立性。当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。那个方向的力就产生那个方向的加速度。1.如图所示,一个劈形物体M放在固定的斜面上,上表面水平,在水平面上放有光滑小球m,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是:A.沿斜面向下的直线B.抛物线C.竖直向下的直线D.无规则的曲线。问题4:必须弄清牛顿第二定律的同体性。加速度和合外力(还有质量)是同属一个物体的,所以解题时一定要把研究对象确定好,把研究对象全过程的受力情况都搞清楚。2.一人在井下站在吊台上,用如图4所示的定滑轮装置拉绳把吊台和自己提升上来。图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m/s2,求这时人对吊台的压力。(g=9.8m/s2)问题5:必须弄清面接触物体分离的条件及应用。相互接触的物体间可能存在弹力相互作用。对于面接触的物体,在接触面间弹力变为零时,它们将要分离。抓住相互接触物体分离的这一条件,就可顺利解答相关问题。下面举例说明。3.一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a()匀加速向下移动。求经过多长时间木板开始与物体分离。4.如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m。现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是,F的最大值是。5.一弹簧秤的秤盘质量m1=1.5kg,盘内放一质量为m2=10.5kg的物体P,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图9所示。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2s内F是变化的,在0.2s后是恒定的,求F的最大值和最小值各是多少?(g=10m/s2)问题6:必须会分析临界问题。6.如图10,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力,A受到的水平力,(t的单位是s)。从开始计时,则:A.A物体在3s末时刻的加速度是初始时刻的倍;B.后,B物体做匀加速直线运动;C.时,A物体的速度为零;D.后,AB的加速度方向相反。7.如图11所示,细线的一端固定于倾角为450的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球。当滑块至少以加速度a=向左运动时,小球对滑块的压力等于零,当滑块以a=2g的加速度向左运动时,线中拉力T=。问题7:必须会用整体法和隔离法解题。两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一.8.如图所示,一个弹簧秤放在光滑的水平面上,外壳质量不能忽略,弹簧及挂钩质量不计,施加水平方向的力、,且,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.9.第7页
用质量为m、长度为L的绳沿着光滑水平面拉动质量为M的物体,在绳的一端所施加的水平拉力为F,如图14所示,求:(1)物体与绳的加速度;(2)绳中各处张力的大小(假定绳的质量分布均匀,下垂度可忽略不计。)1.如图16所示,AB为一光滑水平横杆,杆上套一轻环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当细绳与AB成θ角时,小球速度的水平分量和竖直分量的大小各是多少?轻环移动的距离d是多少?问题8:必须会分析与斜面体有关的问题。2.如图17所示,水平粗糙的地面上放置一质量为M、倾角为θ的斜面体,斜面体表面也是粗糙的有一质量为m的小滑块以初速度由斜面底端滑上斜面上经过时间t到达某处速度为零,在小滑块上滑过程中斜面体保持不动。求此过程中水平地面对斜面体的摩擦力与支持力各为多大?问题9:必须会分析传送带有关的问题。3.如图18所示,某工厂用水平传送带传送零件,设两轮子圆心的距离为S,传送带与零件间的动摩擦因数为μ,传送带的速度恒为,在P点轻放一质量为m的零件,并使被传送到右边的处。设零件运动的后一段与传送带之间无滑动,则传送所需时间为,摩擦力对零件做功为.4.如图19所示,传送带与地面的倾角θ=37o,从A到B的长度为16m,传送带以的速度逆时针转动。在传送带上端无初速的放一个质量为0.5㎏的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A运动到B所需的时间是多少?(sin37o=0.6,cos37o=0.8)问题10:必须会分析求解联系的问题。5.风洞实验室中可产生水平方向的,大小可调节的风力。现将一套有小球的细直杆放入风洞实验室。小球孔径略大于细杆直径。如图21所示。(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上作匀速运动,这时小球所受的风力为小球所受重力的0.5倍。求小球与杆间的动摩擦因数。(2)保持小球所受风力不变,使杆与水平方向间夹角为370并固定,则小球从静止出发在细杆上滑下距离S所需时间为多少?(sin370=0.6,cos370=0.8)问题11:会利用图型解题6.一颗速度较大的子弹,水平击穿原来静止在光滑水平面上的木块,设木块对子弹的阻力恒定,则当子弹入射速度增大时,下列说法正确的是A.木块获得的动能变大B.木块获得的动能变小C.子弹穿过木块的时间变长D.子弹穿过木块的时间变短问题12:会利用位移关系解题7.一大木箱,放在平板车的后部,到驾驶室的距离L=1.6m,如图所示,木箱与车板之间的动摩擦因数,平板车以恒定的速度匀速行驶,突然驾驶员刹车,使车均匀减速.为不让木箱撞击驾驶室,从开始刹车到车完全停定,至少要经过多少时间?(g取10.0m/s2)第7页
问题13:会解弹簧形变多样性的有关习题1.如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M、N固定于杆上,小球处于静止状态,设拔去销钉M瞬间,小球加速度的大小为12m/s2,若不拔去销钉M而拔去销钉N瞬间,小球的加速度可能是(取g=10m/s2)MNA.22m/s2,竖直向上B.22m/s2,竖直向下C.2m/s2,竖直向上D.2m/s2,竖直向下问题14:会解有关摩擦临界问题2.在光滑的水平桌面上,叠放着两个物体A和B,其中,.为保持A和B相对静止,作用在A物体上的水平力不能超过0.5N.如果将水平力作用在B上,则水平力不能超过____________N,A物体的=_______________.三、警示易错试题典型错误之一:不理解“轻弹簧”的物理含义。3.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有A.l2>l1B.l4>l3C.l1>l3D.l2=l4典型错误之二:受力分析漏掉重力。4.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处。已知运动员与网接触的时间为1.2s。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g=10m/s2)参考答案1.分析与解:对人受力分析,他受到重力mg、支持力FN和摩擦力Ff作用,如图所示.取水平向右为x轴正向,竖直向上为y轴正向,此时只需分解加速度,据牛顿第二定律可得:,因为,解得.2.分析与解:(1)错。因为被剪断的瞬间,上的张力大小发生了变化。剪断瞬时物体的加速度.(2)对。因为被剪断的瞬间,弹簧的长度来不及发生变化,其大小和方向都不变3.分析与解:因小球在水平方向不受外力作用,水平方向的加速度为零,且初速度为零,故小球将沿竖直向下的直线运动,即C选项正确。以下是讨论M和m的加速度:分析与解:只要M和m不完全分离,则M和m在竖直方向上的加速度相等.设这个在竖直方向上的加速度为a.设m与M之间的相互作用力为F.则:对M在平行于斜面方向上列方程,有: (1)对m在竖直方向上列方程,有:(2)由这两个方程就可以求出: ,则a它比g小.4.分析与解:选人和吊台组成的系统为研究对象,受力如图5所示,F为绳的拉力,由牛顿第二定律有:则拉力大小为:第7页
再选人为研究对象,受力情况如图6所示,其中FN是吊台对人的支持力。由牛顿第二定律得:,故由牛顿第三定律知,人对吊台的压力与吊台对人的支持力大小相等,方向相反,因此人对吊台的压力大小为200N,方向竖直向下。5.分析与解:设物体与平板一起向下运动的距离为x时,物体受重力mg,弹簧的弹力和平板的支持力N作用。据牛顿第二定律有:得当N=0时,物体与平板分离,所以此时因为,所以。6.分析与解:因为在内F是变力,在以后F是恒力,所以在时,P离开秤盘。此时P受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在0~0.2s这段时间内P向上运动的距离:因为,所以P在这段时间的加速度当P开始运动时拉力最小,此时对物体P有,又因此时,所以有.当P与盘分离时拉力F最大,.7.分析与解:因为在内F是变力,在以后F是恒力,所以在时,P离开秤盘。此时P受到盘的支持力为零,由于盘的质量m1=1.5kg,所以此时弹簧不能处于原长,这与例2轻盘不同。设在0~0.2s这段时间内P向上运动的距离为x,对物体P据牛顿第二定律可得:对于盘和物体P整体应用牛顿第二定律可得:令N=0,并由述二式求得,而,所以求得a=6m/s2.当P开始运动时拉力最小,此时对盘和物体P整体有Fmin=(m1+m2)a=72N.当P与盘分离时拉力F最大,Fmax=m2(a+g)=168N.8.分析与解:对于A、B整体据牛顿第二定律有:,设A、B间的作用为N,则对B据牛顿第二定律可得:解得当时N=0,A、B两物体开始分离,此后B做匀加速直线运动,而A做加速度逐渐减小的加速运动,当时A物体的加速度为零而速度不为零。后,A所受合外力反向,即A、B的加速度方向相反。当时,A、B的加速度均为。综上所述,选项A、B、D正确。9.分析与解:当滑块具有向左的加速度a时,小球受重力mg、绳的拉力T和斜面的支持力N作用,如图12所示。在水平方向有Tcos450-Ncos450=ma;在竖直方向有Tsin450-Nsin450-mg=0.由上述两式可解出:由此两式可看出,当加速度a增大时,球受支持力N减小,绳拉力T增加。当a=g时,N=0,此时小球虽与斜面有接触但无压力,处于临界状态。这时绳的拉力.当滑块加速度a>g时,则小球将“飘”离斜面,只受两力作用,如图13所示,此时细线与水平方向间的夹角αL3,即B选项正确。分析纠错:由于弹簧的质量不计,所以不论弹簧做何种运动,弹簧各处的弹力大小都相等。因此这四种情况下弹簧的弹力是相等,即四个弹簧的伸长量是相等。只有D选项正确。22.错解:将运动员看质量为m的质点,从h1高处下落,刚接触网时速度的大小(向下),弹跳后到达的高度为h2,刚离网时速度的大小(向上),速度的改变量(向上),以a表示加速度,表示接触时间,则,接触过程中运动员受到向上的弹力F。由牛顿第二定律,,由以上五式解得,,代入数值得:。分析纠错:接触过程中运动员受到向上的弹力F和重力mg,由牛顿第二定律,,由以上五式解得,,代入数值得:第7页