机械能重点难点易错点高频考点经典题——系统机械能守恒专题由两个或两个以上的物体所构成的系统,其机械能是否守恒,就看除了重力、弹力之外,系统内的各个物体所受到的各个力做功之和是否为零,为零,则系统的机械能守恒;做正功,系统的机械能就增加,做做多少正功,系统的机械能就增加多少;做负功,系统的机械能就减少,做多少负功,系统的机械能就减少多少。系统间的相互作用力分为三类:1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类(3)在水平面上可以自由移动的光滑圆弧类。(4)悬点在水平面上可以自由移动的摆动类。(1)轻绳连体类这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。例:如图,倾角为q的光滑斜面上有一质量为M的物体,通过一根跨过定滑轮的细绳与质量为m的物体相连,开始时两物体均处于静止状态,且m离地面的高度为h,求它们开始运动后m着地时的速度?例:如图,光滑斜面的倾角为q,竖直的光滑细杆到定滑轮的距离为a,斜面上的物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物体从静止开始运动,求m下降b时两物体的速度大小?(2)轻杆连体类这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。例:如图,质量均为m的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L、2L,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小(3)在水平面上可以自由移动的光滑圆弧类。光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明6
例:四分之一圆弧轨道的半径为R,质量为M,放在光滑的水平地面上,一质量为m的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?(4)悬点在水平面上可以自由移动的摆动类。悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:质量为M的小车放在光滑的天轨上,长为L的轻绳一端系在小车上另一端拴一质量为m的金属球,将小球拉开至轻绳处于水平状态由静止释放。求(1)小球摆动到最低点时两者的速度?(2)此时小球受细绳的拉力是多少?机械能守恒定律的五类应用一、连续媒质的流动问题Ah图1例1如图1所示,一粗细均匀的U形管内装有同种液体竖直放置,右管口用盖板A密闭一部分气体,左管口开口,两液面高度差为h,U形管中液柱总长为4h,现拿去盖板,液柱开始流动,当两侧液面恰好相齐时,右侧液面下降的速度大小为多少?图2V0OR例2如图2所示,露天娱乐场空中列车是由许多节完全相同的车厢组成,列车先沿光滑水平轨道行驶,然后滑上一固定的半径为R的空中圆形光滑轨道,若列车全长为L(L>2πR),R远大于一节车厢的长度和高度,那么列车在运行到圆环前的速度至少要多大,才能使整个列车安全通过固定的圆环轨道(车厢间的距离不计)?二、轻杆连接体问题例3如图3所示,一根轻质细杆的两端分别固定着A、B两只质量均为m的小球,O点是一光滑水平轴,已知AO=L,BO=2L,使细杆从水平位置由静止开始转动,当B球转到O点正下方时,它对细杆的拉力大小是多大?AOB图36
三、轻绳连接体问题例4质量为M和m的两个小球由一细线连接(M>m),将M置于半径为R的光滑球形容器上口边缘,从静止释放(如图4所示),求当M滑至容器底部时两球的速度(两球在运动过程中细线始终处于绷紧状态)。Mm图4RO四、弹簧连接体问题R600图5COAB例5如图5所示,半径的光滑圆环固定在竖直平面内。轻持弹簧一端固定在环的最高点A处,另一端系一个质量的小球,小球套在圆环上。已知弹簧的原长为劲度系数。将小球从图示位置,由静止开始释放,小球将沿圆环滑动并通过最低点C。已知弹簧的弹性势能,重力加速度,求小球经过C点的速度的大小。五、卫星的变轨道问题例6利用以下信息:地球半径为R,地球表面的重力加速度为g,以无穷远处为零势能面,距离地心为r,质量为m的物体势能为(其中M为地球质量,G为万有引力恒量),求解下列问题:某卫星质量为m,在距地心为2R的轨道上做圆周运动。在飞行的某时刻,卫星向飞行的相反方向弹射出质量为的物体后,卫星做离心运动。若被弹射出的物体恰能在原来轨道上做相反方向的匀速圆周运动,则卫星的飞行高度变化多少?习题1.如图5-3-15所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经过a点,乙小球竖直下落经过b点,a、b两点在同一水平面上,不计空气阻力,下列说法中正确的是( )A.甲小球在a点的速率等于乙小球在b点的速率B.甲小球到达a点的时间等于乙小球到达b点的时间C.甲小球在a点的机械能等于乙小球在b点的机械能(相对同一个零势能参考面)D.甲小球在a点时重力的功率等于乙小球在b点时重力的功率2.一根质量为M的链条一半放在光滑的水平桌面上,另一半挂在桌边,如图5-3-16(a)所示.将链条由静止释放,链条刚离开桌面时的速度为v1.若在链条两端各系一个质量均为m6
的小球,把链条一半和一个小球放在光滑的水平桌面上,另一半和另一个小球挂在桌边,如图5-3-16(b)所示.再次将链条由静止释放,链条刚离开桌面时的速度为v2,下列判断中正确的是( ) A.若M=2m,则v1=v2B.若M>2m,则v1<v2C.若M<2m,则v1>v2D.不论M和m大小关系如何,均有v1>v23.在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降高度为h的过程中,下列说法正确的是(g为当地的重力加速度)( )A.他的动能减少了FhB.他的重力势能增加了mghC.他的机械能减少了(F-mg)hD.他的机械能减少了Fh4.如图5-3-18所示,静止放在水平桌面上的纸带,其上有一质量为m=0.1kg的铁块,它与纸带右端的距离为L=0.5m,铁块与纸带间、纸带与桌面间动摩擦因数均为μ=0.1.现用力F水平向左将纸带从铁块下抽出,当纸带全部抽出时铁块恰好到达桌面边缘,铁块抛出后落地点离抛出点的水平距离为s=0.8m.已知g=10m/s2,桌面高度为H=0.8m,不计纸带质量,不计铁块大小,铁块不滚动.求:(1)铁块抛出时速度大小;(2)纸带从铁块下抽出所用时间t1;(3)纸带抽出过程产生的内能E.5.如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=0.25.设计要求:木箱在轨道顶端时,自动装货装置将质量m=2kg的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小;(2)满足设计要求的木箱质量.1.如图5-3-20所示,一个质量为m的小铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为( )A.mgRB.mgRC.mgRD.mgR2.如图5-3-21所示,斜面置于光滑水平地面上,其光滑斜面上有一物体由静止下滑,在物体下滑过程中,下列说法正确的是( )A.物体的重力势能减少,动能增加B.斜面的机械能不变C.斜面对物体的作用力垂直于接触面,不对物体做功D.物体和斜面组成的系统机械能守恒3.如图5-3-22所示,一根跨越光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点),演员a站于地面,演员b从图示的位置由静止开始向下摆,运动过程中绳始终处于伸直状态,当演员b摆至最低点时,演员a刚好对地面无压力,则演员a与演员b质量之比为( )A.1∶1B.2∶1C.3∶1D.4∶14.如图5-3-23所示,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为( )A.hB.1.5hC.2hD.2.5h5.如图5-3-24所示,在动摩擦因数为0.2的水平面上有一质量为3kg的物体被一个劲度系数为120N/m的压缩轻质弹簧突然弹开,物体离开弹簧后在水平面上继续滑行了1.3m才停下来,下列说法正确的是(g取10m/s2)( )A.物体开始运动时弹簧的弹性势能Ep=7.8JB.物体的最大动能为7.8JC.当弹簧恢复原长时物体的速度最大6
D.当物体速度最大时弹簧的压缩量为x=0.05m6.如图5-3-25所示,电梯由质量为1×103kg的轿厢、质量为8×102kg的配重、定滑轮和钢缆组成,轿厢和配重分别系在一根绕过定滑轮的钢缆两端,在与定滑轮同轴的电动机驱动下电梯正常工作,定滑轮与钢缆的质量可忽略不计,重力加速度g=10m/s2.在轿厢由静止开始以2m/s2的加速度向上运行1s的过程中,电动机对电梯共做功为( )A.2.4×103JB.5.6×103JC.1.84×104JD.2.16×104J7.来自福建省体操队的运动员黄珊汕是第一位在奥运会上获得蹦床奖牌的中国选手.蹦床是一项好看又惊险的运动,如图5-3-26所示为运动员在蹦床运动中完成某个动作的示意图,图中虚线PQ是弹性蹦床的原始位置,A为运动员抵达的最高点,B为运动员刚抵达蹦床时的位置,C为运动员抵达的最低点.不考虑空气阻力和运动员与蹦床作用时的机械能损失,A、B、C三个位置运动员的速度分别是vA、vB、vC,机械能分别是EA、EB、EC,则它们的大小关系是( )A.vAvCB.vA>vB,vBECD.EA>EB,EB=EC8.如图5-3-27所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点.下列说法中正确的是( )A.小球从A出发到返回A的过程中,位移为零,合外力做功为零B.小球从A到C过程与从C到B过程,减少的动能相等C.小球从A到B过程与从B到A过程,损失的机械能相等D.小球从A到C过程与从C到B过程,速度的变化量相等9.在2008北京奥运会上,俄罗斯著名撑杆跳运动员伊辛巴耶娃以5.05m的成绩第24次打破世界记录.图5-3-28为她在比赛中的几个画面,下列说法中正确的是( )A.运动员过最高点时的速度为零B.撑杆恢复形变时,弹性势能完全转化为动能C.运动员要成功跃过横杆,其重心必须高于横杆D.运动员在上升过程中对杆先做正功后做负功10.如图5-3-29所示,半径为R的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬间得到一个水平初速度v0,若v0大小不同,则小球能够上升到的最大高度(距离底部)也不同.下列说法中正确的是( )A.如果v0=,则小球能够上升的最大高度为B.如果v0=,则小球能够上升的最大高度为C.如果v0=,则小球能够上升的最大高度为D.如果v0=,则小球能够上升的最大高度为2R11.如图5-3-30所示,AB为半径R=0.8m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量M=3kg,车长L=2.06m,车上表面距地面的高度h=0.2m.现有一质量m=1kg的滑块,由轨道顶端无初速释放,滑到B端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5s时,车被地面装置锁定.(g=10m/s2)试求:(1)滑块到达B端时,轨道对它支持力的大小;(2)车被锁定时,车右端距轨道B端的距离;(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;(4)滑块落地点离车左端的水平距离.12.如图7-7-11所示,质量为2m和m可看做质点的小球A、B,用不计质量的不可伸长的细线相连,跨在固定的半径为R的光滑圆柱两侧,开始时A球和B球与圆柱轴心等高,然后释放A、B两球,则B球到达最高点时的速率是多少?6
6