《折扣与成数》教学设计一、教学目标(一)知识与技能1.理解“折扣”“成数”的含义,掌握折扣、成数和百分数的关系。(二)过程与方法利用生活情境重现结合所学数学知识,经历分析等探究过程,发现知识之间的联系。(三)情感态度和价值观通过教学,体验到数学与实际生活的联系,培养学生数学的应用意识。二、教学重难点教学重点:理解“折扣”“成数”的含义,掌握折扣、成数和百分数的关系。教学难点:在理解的基础上,与百分数应用题建立联系,正确解决问题。三、教学准备教学课件。
四、教学过程(一)创设情境,引入新课1.同学们去商场购物的时候遇到过商家做促销活动吗?一般他们会采用哪些促销手段?2.刚才同学们都提到了“打折”这种情况,没错,像这样降价出售一些商品,引发人们的购买欲望,是商家常用的促销手段之一。今天这节课,我们就先来了解有关于“折扣”这件事(板书课题──折扣)。(二)结合情境,学习新知1.理解“折扣”(1)(课件出示促销文字信息)这里的九折、八五折是什么意思?(2)同桌互相说一说。(3)反馈:预设:①举例说明:一件衣服100元,八五折的话就只要85元。②九折就是现价是原价的90%。(4)归纳:商品打几折,其实就是指现价是原价的百分之几。(5)练习:看折扣写出相应的百分数。
( )% ( )% ( )%2.解决与“折扣”相关的问题(1)课件出示教材第8页例1第(1)小题:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?①独立完成并进行校对。②反馈:谁能来说说自己是怎么想的,为什么这样计算?重点分析以下问题:问题一:八五折是什么意思?是把谁看作单位“1”?问题二:求“买这辆车用了多少钱”也就是在求什么?(180的85%是多少)(2)课件出示教材第8页例1第(2)小题:爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?①独立思考并完成,同桌交流解题思路。②交流反馈:重点对比两种解题方式:
第一种算法:原价160减去现价(即原价的90%):160-160×90%。第二种算法:现价是原价的90%,也就是现价比原价便宜了(1-90%),160×(1-90%)就是便宜的价钱。想想哪种方法计算起来比较简便。(3)练习教材第8页“做一做”,完成后校对。(4)小结:通过刚才的问题解决,你发现原价、现价、折扣之间有什么关系吗?现价=原价×折扣。3.理解“成数”生活中的百分数还有很多,比如说“成数”。(板书课题──成数)(1)学生自学教材,明确成数的含义。(2)反馈:说说什么是成数,可请学生举例说明。
(3)练习:将下列成数改写成百分数。二成=( )%; 四成五=( )%; 七成二=( )%。4.解决与“成数”相关的问题(1)课件出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时? ①学生读题,独立解答问题。②交流说说解题思路。思路一:今年比去年节电二成五,也就是今年比去年少25%,今年用电是去年的(1-25%),即350×(1-25%)。思路二:去年用电数减去今年节约的度数,即350-350×25%。教师小结:可以根据自己的理解和计算能力,选择合适的方法进行计算。(2)课件出示教材第9页“做一做”:某市2012年出境旅游人数为15000人次,比上一年增长两成。该市2011年出境旅游人数为多少人次?①独立完成再进行集体校对。②说说如何解决这类“成数”的问题。5.小结
(1)结合例1及例2说说我们是怎么解决有关“折扣”和“成数”的问题的?(2)教师小结:在解答这类应用题时,关键是理解“折扣”及“成数”的含义,把“折扣”或“成数”化成百分数,再按解百分数应用题的方法解答。(三)应用练习,巩固认知今天我们学习的知识可以帮助我们解决生活中的一些问题,现在请你来算一算,做一做。1.课件出示教材第13页练习二第1题。 (1)独立完成,集体校对。(2)引导学生按一定的顺序进行思考。2.课件出示教材第13页练习二第3题。书店的图书凭优惠卡可打八折,小明用优惠卡买了一套书,省了9.6元。这套书原价多少钱?
(1)请学生读题思考:9.6元表示的实际含义是什么,和八折有什么关系?引导明确:9.6元就是打折后比原价减少的钱数,它相当于原价的(1-80%)。(2)尝试练习,集体校对。3.课件出示教材第13页练习二第4题。某县前年秋粮产量为2.8万吨,去年比前年增产三成。去年秋粮产量是多少万吨?4.课件出示教材第13页练习二第5题。某汽车出口公司二月份出口汽车1.3万辆,比上月增长3成。一月份出口汽车多少万辆?(1)读题,找出关键句,想想两道题目中增长的3成,分别是谁的3成?也就是把谁看作单位“1”?应该怎样进行计算?(2)独立完成,集体校对。(四)回顾梳理,课堂总结今天这节课我们学了什么?我们应如何解决这一类问题?