倒数的认识一、复习引入1、先让我们先来看看语文中有趣的现象(板书)“吴——吞”,“士——干”,“杏——呆”你们有发现什么吗?在数学方面如果把一个数倒一下会有什么现象,你们想知道吗?好,这节课我们一起来学习,请看下面的题。(课件显示)像、、、12我们把分子和分母交换位置是什么样子的呢?(倒过来是,分母是1的分数可以化成整数,所以可以写成5)(12就可以看成是分母是1的分数,所以分子、分母交换位置就是)2、我们看看,如果把每组数相乘会有怎样的结果呢?×××512×生:(1)乘积是1。3、你能写出这样的式子来吗?(1)代表说一说。(2)像这样乘积是1的两个数互为倒数。(板书:乘积是1的两个数互为倒数。)这就是今天我们要学习的内容:倒数的认识。(板书:倒数的认识)二.探索新知(一)教学倒数的意义1、说一说:你对“乘积是1的两个数互为倒数”理解是怎样的?生:1)乘积是1。2)两个数。2、问:=1,那和互为倒数?(不对,必须是两个数的乘积是1,和不行。)如果是相差为1,或者是相减为1呢?(强调只能是相乘的积为1。)3、问:像刚才×=1,那么是倒数,也是倒数,你们说对不对?为什么?(1)生自由讨论(2)倒数是表示两个数的关系,不能是一个数。就像以前我们学的因数、倍数,我们能说2是因数,某12是倍数吗?只能说2是谁的因数,12是谁的倍数。他们是一种相互关系。4
(3)像×=1,所以和互为倒数,就是说:是的倒数,是的倒数。(4)谁能按照老师刚才这样来说一说这几个式子?×=1×5=112×=1(5)现在请同桌互相说说你们刚才写的式子。4、反馈练习:(1),所以()和()互为倒数。(2)和7互为倒数的意思是()的倒数是()。(3),所以、、互为倒数。()5、想一想:互为倒数的两个数有什么特点?发现:互为倒数的两个数乘积是1,它们的分子和分母正好颠倒了位置。(二)教学求倒数的方法:出示例1:下面哪两个数互为倒数?6101、学生回答,教师板书表示。2、你是怎样找一个数的倒数的?学生回答,教师板书:分子、分母交换位置的倒数是。分子、分母交换位置的倒数是。6=分子、分母交换位置6的倒数是。(1)我们怎么检验这两个数是互为倒数?(乘积是1)组织检验:(自然数可以看成分母是1的分数,也可以把分子、分母调换位置。)(2)讨论:1的倒数是多少?0有倒数吗?a、先让学生说出自己的看法。b、全班交流,教师简要说明。师:1的倒数是1,0没有倒数。(板书)(根据导数的意义,因为1×4
1=1,所以1的倒数是1;因为0与任何数相乘都是0,所以0没有倒数。)(3)怎样求一个数的倒数?小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。(4)请同学们快速完成课倍本28页的“做一做”。a、学生独立完成,然后与同伴交流。b、全班反馈。3、在我们小学所学的数字当中只有0是没有倒数,那么我们学的小数和分数呢?出示:0.3的倒数是多少?2的倒数是多少?(1)学生四人小组讨论。(2)学生回答,老师板书:0.3=分子、分母交换位置0.3的倒数是。(3)请同学说说求小数的倒数的方法?小结:求小数的倒数的方法:小数分数倒数。2=分子、分母交换位置2的倒数是。(4)请同学说说求分数的倒数的方法?小结:求带分数的倒数的方法:带分数假分数倒数。三.巩固练习课本29完成练习六。1、将互为倒数的两个数用线连起来。81002、下面的说法对不对?为什么?(1)与的乘积为1,所以和互为倒数。()(2)××=1,所以、、互为倒数。()(3)0的倒数还是0。()(4)一个数的倒数一定比这个数小。()3、说下面各数的倒数。4
5102四.提高练习。1、填一填。()×5=()×6=()×7=×()=1×()=()×9=()×=×()2、想一想:0.35的倒数是多少?2的倒数是多少?五.全课小结:通过这节课你知道了什么?理解倒数是两个数之间的关系,知道求一个数的倒数就是把这个数的分子和分母对掉位置。所有真分数的倒数都是假分数。大于1的假分数的倒数都是真分数。1的倒数是1。0没有倒数。分数单位的倒数都是整数。非零整数的倒数都是分数单位六.作业:练习六4、5七.板书设计倒数的认识乘积是1的两个数互为倒数。例1下面哪两个数互为倒数?610分子、分母交换位置的倒数是。6=分子、分母交换位置6的倒数是。1的倒数是1,0没有倒数。0.3=分子、分母交换位置0.3的倒数是。2=分子、分母交换位置2的倒数是。4