六年级下册:《圆柱的表面积》教案 教学目标: 1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系 2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。 3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。 教学重点: 使学生认识圆柱侧面展开图的多样性。 教学难点: 学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。 教学用具: 课件、圆柱体的瓶子、剪子 教学过程:
一、创设情境,引起兴趣。 拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想) 二、自主探究,发现问题。 活动一研究侧面积 1.独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。 2.观察对比:观察展开的图形各部分与圆柱体有什么关系? 3.小组交流:能用已有的知识计算它的面积吗? 4.小组汇报。(选出一个学生已经展开的图形贴到黑板上) 重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高) 长方形的面积=圆柱的侧面积即长×宽=底面周长×高,所以, 圆柱的侧面积=底面周长×高S侧==C×h 如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
如果圆柱展开是平行四边形,是否也适用呢? 学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开) 活动二研究表面积 1.现在请大家试着求出这个圆柱体茶叶罐用料多少。 学生测量,计算表面积。 2.圆柱体的表面积怎样求呢? 得出结论:圆柱的表面积=圆柱的侧面积+底面积×2 3.动画:圆柱体表面展开过程 三、实际应用 1.解决书上的例题 2.填空 圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为() 3.要求一个圆柱的表面积,一般需要知道哪些条件()
4.教材第六页试一试。 四、板书 圆柱体的表面积 圆柱的侧面积=底面周长×高→S侧=ch ↓↑↑ 长方形面积=长×宽 圆柱的表面积=圆柱的侧面积+底面积×2