自行车里的数学教学目标知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。过程与方法:经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。情感态度与价值观:加深学生对所学知识及其相互关系的理解。培养学生学以致用,做事认真,用数学眼光透视周围事物,增强数学意识。教学重难点引导学生理解变速自行车能变速的原理。教学过程一、揭示课题1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。 2、自行车里会有数学问题吗?想一想。 二、研究普通自行车的速度与内在结构的关系 1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。 2、分析问题 (1)学生讨论如何解决问题。 方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。(2)讨论:前齿轮转一圈,后齿轮转几圈? 前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数3、建立数学模型,收集数据并求解。(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数)(2)分组收集所需要的数据,带入上述模式,求出答案。4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。 三、研究变速自行车能组合出多少种速度? 1、提出问题:变速自行车能组合出多少种速度? (1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。) (2)根据这个结构,可以组合出多少种速度? 2、分析问题,求解,汇报。 3、蹬同样的圈数,哪种组合使自行车走得最远? 四、学以致用一辆变速自行车有2个前齿轮,分别有46和38个齿,有4个后齿轮,分别有20、16、14、12个齿,车轮直径66cm。小明从家到学校有一段平路和不是很陡的上坡路。平路1000米,上坡800米,小明如何使用变速车比较合理?小明骑车走这段平路至少蹬多少圈?五、课堂小结
自行车里的学问可真大,你还能提出一些数学问题并解决吗? [自行车里的数学]1、踏板蹬一圈,是不是车轮也走一圈?2、踏板蹬一圈,所走的路程与什么有关3检测(1)、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米? (2)、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)