人教版小学数学六年级下册《自行车里的数学》教学设计 教学内容:人教版实验教材六年级下册第三单元数学实践活动课教材分析:自行车里的数学问题是一节数学实践活动课,受传统教学的限制,需要学生提前观察、实践,来预习和初步了解自行车里的数学问题。但是在实际的预习中,学生抓不住重点,自行车蹬一圈,自行车走多远?学情分析:这一问题对于学生来说太抽象,达不到预习的目的。这个问题是本节课的学习重点和难点,旨在通过微课程突破这一学习难点,让每个学生学有所成。教学目标:1通过解决生活中常见的有关自行车的问题,了解数学与生活的广泛联系。探索普通自行车和变速自行车的速度与内在结构的关系。2.经历提出问题——分析问题—— 建立数学模型——解释与应用的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深所学知识及其相互关系的理解。3.能在自主合作交流的过程中获得良好的情感体验。教学重难点:1、普通自行车的速度与其内在结构关系的数学模型; 2、变速自行车的能变化出多少种速度。教学过程:一.创设情景,导入新课。
示微课程视频进行授课。咱们班同学有多少人会骑自行车呀?老师准备了一幅自行车图形,看看谁能从中找出我们学过的知识。其实自行车里蕴含着更为丰富的数学知识,今天我们就一起进一步探究自行车里的数学。板书课题 二. 提出问题,探究自行车的速度与内在结构的关系。 1.同学们都知道骑自行车比走路省劲儿,因为骑自行车蹬一圈能走很远,你知道这一圈能走多远吗?你有什么办法吗? (实际测量和通过计算)2.实际测量 请第一名同学把车把,第二名同学摇一圈前齿轮,第三名同学在起点和终点做好记号,第四名同学与第三名同学测量结果。测量后再请一组来测量一次。其他同学仔细观察自行车在行进时什么在动?并想一想自行车为什么能往前走? 3.学生汇报测量结果。(可能发现误差较大)观看微课程视频进行授课。 4.看链条与齿轮组合的图片。重点引导学生推导出前齿轮的齿数乘以前齿轮转的圈数等于后齿轮的齿数乘以后齿轮转的圈数。 5.猜想:蹬一圈走的距离可能会与什么有关?
6.测量车轮直径,数一数前后齿轮的齿数。 7.小组合作学习,讨论蹬一圈走的距离与什么有关?有什么关系? 8.、教师巡视指导,关键看蹬一圈前齿轮后齿轮转几圈? 9、汇报得出:蹬一圈的距离=前齿轮的齿数除以后齿轮的齿数再乘以车轮周长。10.让学生分组收集所需要的数据,代入数学模型,求出答案。11.汇报交流,再对各组的结果进行比较。 三.灵活运用 1.张华的自行车前齿轮有48个齿,后齿轮有19个齿,车轮直径71厘米,李丽的自行车前齿轮有26个齿,后齿轮有16个齿,车轮直径66厘米。同样蹬一圈,谁的自行车走的远? 2.如果让你买自行车,你会怎样选择?为什么?有没有想买变速自行车的?为什么?四.研究变速自行车能变出多少种速度。1.出示变速自行车地主要结构图:有2个前齿轮,6个后齿轮。2以小组为单位研究一下(1)能变出多少种速度?(2)蹬同样的圈数,哪种组合使自行车走得更远?3.小组汇报第一个问题。(12种方案)4.汇报第二种方案。学生通过讨论,完成下题。
变速自行车的前齿轮齿数为 48,40,后齿轮的齿数分别是28,24,20,18,16,14,哪种组合速度最快?哪种组合速度最慢? 五.总结延伸 1.这节课我们都用到了哪些数学知识?都是在解决什么问题时用到的? 2.现实生活中你遇到过哪些问题是用数学知识解决的? 数学与我们的生活紧密联系,在现实生活中,我们不仅要学会数学,更重要的是会用数学,使我们的学习能够学以致用。