自行车里的数学教学设计学习目标: 1.运用所学的圆、比例等知识解决问题。 2.了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。 3.通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力。 4.经历解决问题的基本过程,了解数学与生活的密切关系。 学习重点:运用所学的比例或与其相关的知识解决自行车中的数学问题。 学习难点:运用所学的比例或与其相关的知识解决自行车中的数学问题。 学习准备:课件等。 学习过程: 环节预设 教师活动 学生活动 设计意图 一、情境导入 “你知道哪些自行车的种类?” 出示各种自行车的图片 学生积极思考、回答问题。 先给出学生一个熟悉的生活场景,便于学生理解。 二、新知讲授 (一)揭示课题 1.说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2.自行车里会有数学问题吗?想一想。 (二)研究普通自行车的速度与内在结构的关系 1.提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。 2.分析问题 (1)学生讨论如何解决问题。 方案一:直接测量,但是误差较大。 方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。 (2)讨论:前齿轮转一圈,后齿轮转几圈? 前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数 3.建立数学模型,收集数据并求解。 (1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数) (2)分组收集所需要的数据,带入上述模式,求出答案。 4.汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。 (三)研究变速自行车能组合出多少种速度 1.提出问题:变速自行车能组合出多少种速度? (1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。) (2)根据这个结构,可以组合出多少种速度?
2.分析问题,求解,汇报。 3.蹬同样的圈数,哪种组合使自行车走得最远? 学生讨论交流并回答问题。 学生通过观察、思考、讨论、合作、解决问题等一系列学习过程,逐步培养自己的合作探索精神,更加善于在生活中进行学习。 动手操作的过程中,学生会逐渐融入到知识形成的整个过程当中去,培养学生解决实际问题的能力,了解数学与生活的密切关系。 三、巩固应用 1、已知:前齿轮齿数为:26,后齿轮齿数为:16,车轮直径为:66cm。问:①你能算出蹬一圈,它能走多远?②小红家距离学校大约500米,从家到学校至少要蹬多少圈? 共两题 学生进行思考、解答。 通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。 四、课堂小结通过本节课的学习你有什么收获? 学生思考并回答 让学生体验成功的喜悦,进一步拓展学生的思维和创造能力