六年级数学《立体图形的复习》教学设计《图形的认识与测量》教学设计教学内容:立体图形的知识整理教学目标:1、通过对立体图形的复习,进一步发展学生的空间观念,掌握各个立体图形的概念、特征。2、通过复习使学生掌握立体图形表面积、侧面积、体积的计算公式。3、培养学生运用所学知识解决实际问题的能力。教学准备:课件教学过程:一、复习引入1、今天我们大家一起重新来认识立体图形的有关知识。2、老师检查昨天让学生整理得的知识、同桌互相检查。3、集体汇报。二、知识点归纳(一)复习立体图形特征1、(出示长方体、正方体)长方体、正方体它们各有什么特征?它们有什么相同点和不同点,谁能看着表格说一说。(指生上来汇报,拿着模型)长方体与正方体有什么关系?2、(出示圆柱和圆锥)圆柱、圆锥它们又各有什么特征?沿高剪开,侧面展开图是一个长方形或正方形。当底面周长与高相等时展开是正方形,当底面周长与高不相等时,展开是一个长方形。3、分类,建立知识网络.
你能给这四个立体图形分分类吗?(为什么)交流:(1)长方体、正方体一组,(都有六个面、12条棱、方方的)圆柱圆锥一组。(底面都是圆)4、观察物体,从不同侧面看到的图形是什么形状。(二)复习表面积和体积1、师:以前我们不但学习了他们的特征,还学习了什么知识?(表面积和体积) 什么叫表面积,什么叫体积?2、课前老师让同学们整理了这些立体图形的表面积和体积公式,谁原意来交流一下,我们先说表面积公式(教师板书公式)。重点:圆柱的侧面积为什么是底面周长×高?再交流体积公式(教师板书公式)。3、出示。 师:怎样比较这三个立体图形的体积呢?谁能列出算式?追问:如果不计算体积结果能比较三个立体图形的体积大小吗?(观察三个图形,有什么特点?高相等,只要看什么就可能比较体积大小了?)操作结合板书。你能找到计算这3种立体图形体积的统一公式吗?小结:这三个立体图形都是柱体,像这样的三棱柱、六棱柱也都是柱体,其实所有的柱体都可以用底面积乘高来计算体积。出示三个立体图形,介绍底面和侧面,你能找到求这三个图形侧面积的统一公式吗?三、巩固练习
判断题1、计算圆柱形油桶能装多少升油就是求这个油桶的容积。()2、圆柱底面直径扩大2倍,高不变,它的体积也扩大2倍。()3、两个大小相等的正方体合在一起,成了一个长方体,那么它就有12个面。()4、棱长6分米的正方体,它的表面积和体积相等。()5、求做一个圆柱形的通风管需要多少铁皮,就是求圆柱的表面积。()选择题1、把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体。下面哪句话是正确的?()A、表面积和体积都没变化。B、表面积和体积都发生了变化。C、表面积变了,体积没变。D、表面积没变,体积变了。2、把一个底面半径是2分米、高是3分米的圆柱形容器中注满水,现垂直轻轻插入一根底面积是5平方分米,高是4分米的方钢,溢出水的体积是( )毫升。A、20B、15C、20000D、15000
回答下面的问题,并列出算式(不计算):1、一个圆柱形无盖的水桶,底面半径10分米,高20分米。(1)给这个水桶加个箍,是求什么? (2)求这个水桶的占地面积,是求什么?(3)做这样一个水桶用多少铁皮,是求什么?(4)这个水桶能装多少水,是求什么?拓展练习1、圆柱长10厘米,接上4厘米的一段后,表面积增加了25.12平方厘米,求原来圆柱的体积是多少立方厘米?2、把一根长30厘米的长方体木料锯成3段(如图),表面积比原来增加了20平方厘米,这根木料原来的体积是多少立方厘米?知识应用亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(如下图,没有底面)。至少需要用布多少平方米?它的体积是多少?
四、小结出示三个立体图形,介绍底面和侧面,你能找到求这三个图形侧面积的统一公式吗?