教学内容:人教版数学第十二册《圆柱的体积》。教学目的:1、理解圆柱体积的意义。2、初步掌握圆柱体积的计算方法,会计算圆柱的体积。3、了解圆柱体积的推导过程。4、通过教学,培养学生合理猜测能力、灵活的计算能力,发展学生的空间观念、提高运用所学知识解决简单的实际问题的能力。 教学重点:会计算圆柱的体积。圆柱体积计算公式的推导。 教学难点:圆柱体积计算公式的推导。 教具准备:圆柱体学具。 一、复习旧知,调动学生的积极性。 师:请同学们回忆,圆的面积公式是怎样推导出来的? 生:(1、将圆分成若干等份,拼成一个近似长方形。2、把圆分的等份越多就越接近长方形。) 师:鼓励。(方向要明确,有促进,鼓励学生积极参与,参与合作) 多媒体显示:把圆平均分成若干份,拼成一个近似长方形。 师:什么叫体积?常用的体积单位有哪些?(立方厘米、立方分米、立方米等) 生:略。 师:(表扬,能比划一下1立方厘米、1立方分米、1立方米多大吗?) 师:长方体的体积怎样计算? 生:略。 师板书。长方体的体积=底面积×高 二、导入新课。 1、师:根据体积的含义,想一想,什么叫圆柱的体积? 生:略 师:(出示任意圆柱)你能估计一下这个圆柱的体积吗?(师相机鼓励、指导,更多的学生参与。) 师:拿出你们准备的圆柱,同桌估计一下体积,记录下来。
师:如果你想得到准确的体积,该怎样计算?(学生去猜测,师进行指导、鼓励。) 2、(引导学生完成猜测体积公式) (如果学生猜对)师:怎样证明你的猜测是对的呢?(师要等待) (如果学生不能回答)师:能转化成我们学过的立体图行吗? 3、学生尝试。 (各小组合作,分好工,用圆柱体学具切拼,教师尽可能多参加每个小组的活动,进行指导。) (教师尽可能地参加与多组活动,并指导组与组之间的互评) 4集体交流。 师:自己认为成功的小组请举手,不管是成功还是失败,我们都能从中受到一些启发。失败了,下次再来。请成功的小组介绍一下你们是怎样拼的。 生:略。 师:鼓励。指导。 师:切拼前后,什么变了?什么没变?(小组讨论) (教师相机教学)板书:圆柱的体积=底面积×高 师:这样的证明你们信吗?(信、不信) 师:怀疑好,为什么?(辩论,时间不要长。让学生大胆谈自己的想法,培养学生的能力。) (字母推导) 三、知识的应用。 师:计算圆柱的体积需要哪两个条件?(略) (出示例题,学生试做)指名(后进生两两合作)板演。学生评价,注意保护不足者。 师:认为自己没有错误的同学举手。(回应课开始的估计,拿出引入时估算体积的圆柱。) 师:如果请你测量所需要的数据,你打算测哪些数据比较方便,底面积吗?(当然底面积不能一下测出)(半径或直径,和高)
1.例题:一根圆柱形钢材,底面积是75平方厘米,长是90厘米。它的体积是多少?2.讨论(1)已知圆的半径和高,怎样求圆柱的体积?(2)已知圆的直径和高,怎样求圆柱的体积?(3)已知圆的周长和高,怎样求圆柱的体积?结果:(1)已知圆的半径和高:V=∏r2h(2)已知圆的直径和高:V=∏(d÷2)2h(3)已知圆的周长和高:V=∏(C÷d÷2)2h3.智慧屋1)判断(1).圆柱体的底面积越大,它的体积越大。()(2).圆柱体的高越长,它的体积越大。()(3).圆柱体的体积与长方体的体积相等。()(4).圆柱体的底面直径和高可以相等。()(5).圆柱体体积与长方体体积相等。()(6).长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。()2)填空(1).一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积()。(2).一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是()立方厘米。底面积(平方米)高(米)圆柱体积(立方米)1536.443)填表4)求各圆柱的体积
四、作业1.一根圆柱形钢材,底面积是20平方厘米,高是1.5米。它的体积是多少?五、小结。 师:通过今天的学习你们有哪些收获?还有哪些问题? (生小结。师补充。)