圆锥的体积教学目标 1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。 2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。 教学重点和难点 圆锥体体积公式的推导。 教学过程设计 (一)复习准备 1.我们每组桌上都摆着几何形体,哪种形体的体积我们已经学过了?举起来。 这是什么体?(圆锥体) (板书:圆锥) 上节课我们已经认识了圆锥体,这里有几个画好的几何形体。 (出示幻灯) 一起说,几号图形是圆锥体?(2号) (指着圆锥体的底面)这部分是圆锥体的什么?(底面) (指着顶点)这呢? 哪是圆锥体的高?(指名回答。) (用幻灯出示几个图形。) 在这几个圆锥体中,几号线段是圆锥体的高,就举几号卡片。 (学生举卡片反馈) 你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答) 那么这个圆锥体的高在哪呢?(在幻灯上打出圆锥体的高。) 看来,同学们对于圆锥体的特征掌握得很好,这节课我们就重点研究圆锥的体积。
(板书,在“圆锥”二字的后面写“的体积”。) (复习内容紧扣重点,由实物到实间图形,采用对比的方法,不断加深学生对形体的认识。) (二)学习新课 (老师拿出一大一小两个圆锥体问学生)这两个圆锥体哪个体积大,哪个体积小? (再拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体)这两个形体哪个体积大,哪个体积小?(引起学生争论,说法不一。) 看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积。圆柱体的体积我们已经学过了,等我们学完了圆锥的体积再来解决这个问题。 为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方? (学生得出:底面积相等,高也相等。) 底面积相等,高也相等,用数学语言说就叫“等底等高”。 (板书:等底等高) 既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行) 为什么?(因为圆锥体的体积小) (把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言) 的大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。 (学生分组做实验。) 谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系? (学生发言。) 同学们得出这个结论非常重要,其他组也是这样的吗? 我们学过用字母表示数,谁来把这个公式整理一下?(指名发言) (不是) 是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)为什么你们做实验的圆锥体里装满了水或米往圆柱体里倒,倒三次能倒满呢? (因为是等底等高的圆柱体和圆锥体。) 呢?(在等底等高的情况下。) (老师在体积公式与“等底等高”四个字上连线。) 现在我们得到的这个结论就更完整了。(指名反复叙述公式。) 今后我们求圆锥体体积就用这种方法来计算。 (老师在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。) (三)巩固反馈 1.口答。 填空: 2.板书例题。 例一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少? (指名回答,老师板书。) =20(cm3) 答:它的体积是20cm3。
3.练习题。 一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。) 4.我们已经学会了求圆锥体的体积,现在我们会求前面遗留问题中的比大小的圆锥体体积了。 (幻灯出示其中之一)这个圆锥体,直径为10cm,高为12cm,求体积。 (学生在小黑板上只写结果,举黑板反馈。) 你们求出这个圆锥体的体积是314cm3。现在告诉你们另一个圆柱体的体积我已经计算出来了,它的体积也是314cm3。这两个形体体积怎样?(一样)刚才我们留下的问题就解决了,看来判断问题必须要有科学依据。 5.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。 (1)一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是( )(dm3)。 ②3a(dm3) ③a3(dm3) (举卡片反馈,订正。) (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆锥体体积是( )cm3。 (学生举卡片反馈,订正。) 6.刚才都是老师给你们数据,求圆锥体体积,你们能不能直接告诉我你们桌上的圆锥体体积是多少呢?(不能) 为什么?(因为不知道底面积和高。) 需要测量什么?(底面半径和高。) 怎么测量?(小组讨论。) (指名发言) 今天回家后,把你们测量的数据写在本子上,再计算出体积。 这节课我们学了什么知识?
出思考题: 现在我们比一比谁的空间想象能力强。 看看我们的教室是什么体?(长方体) 要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论) 指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。 (四)指导看书,布置作业 (略) 课堂教学设计说明 本节课的主要特点有以下几点: 一是始终注意激发学生的求知欲。新课一开始就让学生观察,猜测两组圆锥的大小,激发学习的欲望。在公式推导过程中又引导学生估计两个等底等高的圆柱和圆锥的体积之间的倍数关系,使学生的学习兴趣进一步高涨。在应用公式的教学中,又把问题转向了课初学生猜测体积大小的两个圆锥,并引导学生边测量,边计算,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。 二是在教学中重视以学生为学习活动的主体,整个公式的推导,是建立在学生分组观察、实验操作、测量的基础上的,学生不仅参与了获取知识的全过程,更重要的是参与了获取知识的思维过程。 三是教学层次清楚,步步深入,重点突出。 四是练习有坡度,形式多,教学反馈及时、准确、全面、有效。