高中数学选修12复数课件
加入VIP免费下载

高中数学选修12复数课件

ID:1117322

大小:187.5 KB

页数:20页

时间:2022-05-06

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.2(1)复数的四则运算 我们引入这样一个数i,把i叫做虚数单位,并且规定:i21;形如a+bi(a,b∈R)的数叫做复数.全体复数所形成的集合叫做复数集,一般用字母C表示.复习: 实部复数的代数形式:通常用字母z表示,即虚部其中称为虚数单位。复数集C和实数集R之间有什么关系?讨论?复数a+bi 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.特别地,a+bi=0.a=b=0 必要不充分条件问题:a=0是z=a+bi(a、bR)为纯虚数的 注意:一般地,两个复数只能说相等或不相等,而不能比较大小.思考:对于任意的两个复数到底能否比较大小?答案:当且仅当两个复数都是实数时,才能比较大小. 1.复数加减法的运算法则:运算法则:设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减). (2)复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3). 例1.计算解: 2.复数的乘法与除法(1)复数乘法的法则复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i2换成-1,并且把实部合并.即:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i. (2)复数乘法的运算定理复数的乘法满足交换律、结合律以及乘法对加法的分配律.即对任何z1,z2,z3有z1z2=z2z1;(z1z2)z3=z1(z2z3);z1(z2+z3)=z1z2+z1z3. 例2:计算 (3)复数的除法法则先把除式写成分式的形式,再把分子与分母都乘以分母的共轭复数,化简后写成代数形式(分母实数化).即分母实数化 例3.计算解: (1)已知求练习 (2)已知求 (3) 练习:P63 拓展求满足下列条件的复数z:(1)z+(3-4i)=1;(2)(3+i)z=4+2i

10000+的老师在这里下载备课资料