2.3.2两个变量的线性关系.
复习引入:1、前面我们学习了现实生活中存在许多相关关系:商品销售与广告、粮食生产与施肥量、人体的脂肪量与年龄等等的相关关系.2、通过收集大量的数据,进行统计,对数据分析,找出其中的规律,对其相关关系作出一定判断..3、由于变量之间相关关系的广泛性和不确定性,所以样本数据应较大,和有代表性.才能对它们之间的关系作出正确的判断.
探究:.年龄脂肪239.52717.83921.24125.9454927.526.35028.25329.65430.25631.45730.8年龄脂肪5833.56035.26134.6如上的一组数据,你能分析人体的脂肪含量与年龄之间有怎样的关系吗?
从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加”这一规律.而表中各年龄对应的脂肪数是这个年龄人群的样本平均数.我们也可以对它们作统计图、表,对这两个变量有一个直观上的印象和判断.下面我们以年龄为横轴,脂肪含量为纵轴建立直角坐标系,作出各个点,称该图为散点图。如图:O20253035404550556065年龄脂肪含量510152025303540
从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。但有的两个变量的相关,如下图所示:如高原含氧量与海拔高度的相关关系,海平面以上,海拔高度越高,含氧量越少。作出散点图发现,它们散布在从左上角到右下角的区域内。又如汽车的载重和汽车每消耗1升汽油所行使的平均路程,称它们成负相关.注:可考虑让学生思考书P77的思考.O
我们再观察它的图像发现这些点大致分布在一条直线附近,像这样,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线,该直线叫回归方程。那么,我们该怎样来求出这个回归方程?请同学们展开讨论,能得出哪些具体的方案?20253035404550556065年龄脂肪含量0510152025303540
..方案1、先画出一条直线,测量出各点与它的距离,再移动直线,到达一个使距离的和最小时,测出它的斜率和截距,得回归方程。20253035404550556065年龄脂肪含量0510152025303540如图:
.方案2、在图中选两点作直线,使直线两侧的点的个数基本相同。20253035404550556065年龄脂肪含量0510152025303540
方案3、如果多取几对点,确定多条直线,再求出这些直线的斜率和截距的平均值作为回归直线的斜率和截距。而得回归方程。如图我们还可以找到更多的方法,但这些方法都可行吗?科学吗?准确吗?怎样的方法是最好的?20253035404550556065年龄脂肪含量0510152025303540我们把由一个变量的变化去推测另一个变量的方法称为回归方法。
我们上面给出的几种方案可靠性都不是很强,人们经过长期的实践与研究,已经找到了计算回归方程的斜率与截距的一般公式:以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。(参看如书P80)
练习:书P86A组1、3作业:P86A组2