《高中数学-组合》PPT课件
加入VIP免费下载

《高中数学-组合》PPT课件

ID:1117416

大小:253.5 KB

页数:22页

时间:2022-05-06

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
组合 从n个元素中抽取m(m≦n)个元素的排列,可以看作先从n个元素中抽取m个进行组合,再对m个元素进行全排列. 高中部11个班进行篮球单循环比赛,需要进行多少场比赛? 从全班54人中选出3人参加某项劳动,有多少种不同的选法? 平面内有10个点,无任何3点共线,由这些点可连射线多少条? 平面内有10个点,无任何3点共线,由这些点可连直线多少条? 从高二年级的5个文艺节目中选3个,从高一4个文艺节目中选出2个,举办一次文艺会,演出上述5个文艺节目,问编制演出顺序有多少种不同的方法? 解:演出的5个文艺节目是分二次选出来的,把5个文艺节目都选出来,再作全排列,选法种数为,每一组排法种数为故共有演出顺序=7200(种)答:(略). 我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种? 分析此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常的简便.这样就可以简化计算过程. 解43人中任抽5人的方法有种,正副班长,团支部书记都不在内的抽法有种,所以正副班长,团支部书记至少有1人在内的抽法有种. 排异法:有些问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中排除. 全组12个同学,其中有3个女同学,现在选出5个组成一个文娱小组,分别担任不同的工作。(1)至少一个女同学当选有多少种不同的选法?(2)至多两个女同学当选有多少种不同的选法? (1)选出5人中至少一个女同学的选法有(C3C9+C3C9+C3C9)种,再考虑让其分别担任5项不同的工作,则有选法种数为:(C3C9+C3C9+C3C9)A55=79920142332142332 (2)仿(1)的方法得所求选法种数为:(C3C9+C3C9+C9)A5=90720231455 从几类元素中取出符合题意的几个元素,再安排到一定位置上,可采用先选后取的方法。选排问题:先选后排法 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种? 分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解. 解此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题 ,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有种不同的放法,所以名额分配方案有种. 转化法:对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解.

10000+的老师在这里下载备课资料