全国高中数学竞赛课件(免费)
加入VIP免费下载

全国高中数学竞赛课件(免费)

ID:1117423

大小:3.89 MB

页数:94页

时间:2022-05-06

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
高中数学竞赛资料一、高中数学竞赛大纲      全国高中数学联赛      全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。      全国高中数学联赛加试      全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。2.代数周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。4.组合问题矚慫润厲钐瘗睞枥庑赖。圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。注:有*号的内容加试中暂不考,但在冬令营中可能考。聞創沟燴鐺險爱氇谴净。    二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。残骛楼諍锩瀨濟溆塹籟。2、代数式综合除法、余式定理;因式分解;拆项、添项、配方、待定系数法;对称式和轮换对称式;整式、分工、根式的恒等变形;恒等式的证明。酽锕极額閉镇桧猪訣锥。3、方程和不等式含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布;含绝对值的一元一次方程、一元二次方程的解法;含字母系数的一元一次不等式的解法,一元二次不等式的解法;含绝对值的一元一次不等式;简单的多元方程组;简单的不定方程(组)。彈贸摄尔霁毙攬砖卤庑。4、函数94/94 二次函数在给定区间上的最值,简单分工函数的最值;含字母系数的二次函数。5、几何三角形中的边角之间的不等关系;面积及等积变换;三角形中的边角之间的不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质;相似形的概念和性质;圆,四点共圆,圆幂定理;四种命题及其关系。謀荞抟箧飆鐸怼类蒋薔。6、逻辑推理问题抽屉原理及其简单应用;简单的组合问题简单的逻辑推理问题,反证法;极端原理的简单应用;枚举法及其简单应用。厦礴恳蹒骈時盡继價骚。三、高中数学竞赛基础知识第一章集合与简易逻辑一、基础知识定义1一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。集合分有限集和无限集两种。茕桢广鳓鯡选块网羈泪。集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。例如{有理数},分别表示有理数集和正实数集。鹅娅尽損鹌惨歷茏鴛賴。定义2子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。籟丛妈羥为贍偾蛏练淨。定义3交集,94/94 定义4并集,定义5补集,若称为A在I中的补集。定义6差集,。定义7集合记作开区间,集合记作闭区间,R记作定理1集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。預頌圣鉉儐歲龈讶骅籴。定理3乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。渗釤呛俨匀谔鱉调硯錦。二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。例1设,求证:(1);94/94 (2);(3)若,则[证明](1)因为,且,所以(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以(3)设,则(因为)。2.利用子集的定义证明集合相等,先证,再证,则A=B。例2设A,B是两个集合,又设集合M满足,求集合M(用A,B表示)。【解】先证,若,因为,所以,所以;再证,若,则1)若,则;2)若,则。所以综上,3.分类讨论思想的应用。例3,若,求【解】依题设,,再由解得或,因为,所以,所以,所以或2,所以或3。因为,所以,若,则,即,若,则或,解得综上所述,或;或。4.计数原理的应用。94/94 例4集合A,B,C是I={1,2,3,4,5,6,7,8,9,0}的子集,(1)若,求有序集合对(A,B)的个数;(2)求I的非空真子集的个数。铙誅卧泻噦圣骋贶頂廡。【解】(1)集合I可划分为三个不相交的子集;A\B,B\A,中的每个元素恰属于其中一个子集,10个元素共有310种可能,每一种可能确定一个满足条件的集合对,所以集合对有310个。擁締凤袜备訊顎轮烂蔷。(2)I的子集分三类:空集,非空真子集,集合I本身,确定一个子集分十步,第一步,1或者属于该子集或者不属于,有两种;第二步,2也有两种,…,第10步,0也有两种,由乘法原理,子集共有个,非空真子集有1022个。贓熱俣阃歲匱阊邺镓騷。5.配对方法。例5给定集合的个子集:,满足任何两个子集的交集非空,并且再添加I的任何一个其他子集后将不再具有该性质,求的值。坛摶乡囂忏蒌鍥铃氈淚。【解】将I的子集作如下配对:每个子集和它的补集为一对,共得对,每一对不能同在这个子集中,因此,;其次,每一对中必有一个在这个子集中出现,否则,若有一对子集未出现,设为C1A与A,并设,则,从而可以在个子集中再添加,与已知矛盾,所以。综上,。蜡變黲癟報伥铉锚鈰赘。6.竞赛常用方法与例问题。定理4容斥原理;用表示集合A的元素个数,则,需要xy此结论可以推广到个集合的情况,即定义8集合的划分:若,且,则这些子集的全集叫I的一个-划分。定理5最小数原理:自然数集的任何非空子集必有最小数。定理6抽屉原理:将个元素放入个抽屉,必有一个抽屉放有不少于个元素,也必有一个抽屉放有不多于个元素;将无穷多个元素放入个抽屉必有一个抽屉放有无穷多个元素。買鲷鴯譖昙膚遙闫撷凄。例6求1,2,3,…,100中不能被2,3,5整除的数的个数。【解】记,94/94 ,由容斥原理,,所以不能被2,3,5整除的数有个。例7S是集合{1,2,…,2004}的子集,S中的任意两个数的差不等于4或7,问S中最多含有多少个元素?綾镝鯛駕櫬鹕踪韦辚糴。【解】将任意连续的11个整数排成一圈如右图所示。由题目条件可知每相邻两个数至多有一个属于S,将这11个数按连续两个为一组,分成6组,其中一组只有一个数,若S含有这11个数中至少6个,则必有两个数在同一组,与已知矛盾,所以S至多含有其中5个数。又因为2004=182×11+2,所以S一共至多含有182×5+2=912个元素,另一方面,当时,恰有,且S满足题目条件,所以最少含有912个元素。驅踬髏彦浃绥譎饴憂锦。例8求所有自然数,使得存在实数满足:【解】当时,;当时,;当时,。下证当时,不存在满足条件。令,则所以必存在某两个下标,使得,所以或,即,所以或,。(ⅰ)若,考虑,有或,即,设,则,导致矛盾,故只有考虑,有或,即,设,则,推出矛盾,设,则,又推出矛盾,所以故当时,不存在满足条件的实数。94/94 (ⅱ)若,考虑,有或,即,这时,推出矛盾,故。考虑,有或,即=3,于是,矛盾。因此,所以,这又矛盾,所以只有,所以。故当时,不存在满足条件的实数。猫虿驢绘燈鮒诛髅貺庑。例9设A={1,2,3,4,5,6},B={7,8,9,……,n},在A中取三个数,B中取两个数组成五个元素的集合,求的最小值。锹籁饗迳琐筆襖鸥娅薔。【解】设B中每个数在所有中最多重复出现次,则必有。若不然,数出现次(),则在出现的所有中,至少有一个A中的数出现3次,不妨设它是1,就有集合{1,},其中,为满足题意的集合。必各不相同,但只能是2,3,4,5,6这5个数,这不可能,所以構氽頑黉碩饨荠龈话骛。20个中,B中的数有40个,因此至少是10个不同的,所以。当时,如下20个集合满足要求:{1,2,3,7,8},{1,2,4,12,14},{1,2,5,15,16},{1,2,6,9,10},輒峄陽檉簖疖網儂號泶。{1,3,4,10,11},{1,3,5,13,14},{1,3,6,12,15},{1,4,5,7,9},尧侧閆繭絳闕绚勵蜆贅。{1,4,6,13,16},{1,5,6,8,11},{2,3,4,13,15},{2,3,5,9,11},识饒鎂錕缢灩筧嚌俨淒。{2,3,6,14,16},{2,4,5,8,10},{2,4,6,7,11},{2,5,6,12,13},凍鈹鋨劳臘锴痫婦胫籴。{3,4,5,12,16},{3,4,6,8,9},{3,5,6,7,10},{4,5,6,14,15}。恥諤銪灭萦欢煬鞏鹜錦。例10集合{1,2,…,3n}可以划分成个互不相交的三元集合,其中,求满足条件的最小正整数【解】设其中第个三元集为则1+2+…+94/94 所以。当为偶数时,有,所以,当为奇数时,有,所以,当时,集合{1,11,4},{2,13,5},{3,15,6},{9,12,7},{10,14,8}满足条件,所以的最小值为5。鯊腎鑰诎褳鉀沩懼統庫。第二章二次函数与命题一、基础知识1.二次函数:当0时,y=ax2+bx+c或f(x)=ax2+bx+c称为关于x的二次函数,其对称轴为直线x=-,另外配方可得f(x)=a(x-x0)2+f(x0),其中x0=-,下同。硕癘鄴颃诌攆檸攜驤蔹。2.二次函数的性质:当a>0时,f(x)的图象开口向上,在区间(-∞,x0]上随自变量x增大函数值减小(简称递减),在[x0,-∞)上随自变量增大函数值增大(简称递增)。当a0时,方程f(x)=0即ax2+bx+c=0…①和不等式ax2+bx+c>0…②及ax2+bx+c0时,方程①有两个不等实根,设x1,x2(x1x,从而f(f(x))>f(x)。挤貼綬电麥结鈺贖哓类。所以f(f(x))>x,所以方程f(f(x))=x无实根。注:请读者思考例3的逆命题是否正确。4.利用二次函数表达式解题。例4设二次函数f(x)=ax2+bx+c(a>0),方程f(x)=x的两根x1,x2满足0[k(k+2)]k+1,只需证(k+1)2>k(k+2),即证k2+2k+1>k2+2k.显然成立。义淨擁扪殴胁纸窺钣鳧。所以由数学归纳法,命题成立。(4)反证法。例6设实数a0,a1,…,an满足a0=an=0,且a0-2a1+a2≥0,a1-2a2+a3≥0,…,an-2-2an-1+an≥0,求证ak≤0(k=1,2,…,n-1).绥骅懸缙澀鷂禍紳撻粮。【证明】假设ak(k=1,2,…,n-1)中至少有一个正数,不妨设ar是a1,a2,…,an-194/94 中第一个出现的正数,则a1≤0,a2≤0,…,ar-1≤0,ar>0.于是ar-ar-1>0,依题设ak+1-ak≥ak-ak-1(k=1,2,…,n-1)。馒锁開钥焖緒珏編軻錙。所以从k=r起有an-ak-1≥an-1-an-2≥…≥ar-ar-1>0.因为an≥ak-1≥…≥ar+1≥ar>0与an=0矛盾。故命题获证。(5)分类讨论法。例7已知x,y,z∈R+,求证:【证明】不妨设x≥y,x≥z.ⅰ)x≥y≥z,则,x2≥y2≥z2,由排序原理可得,原不等式成立。ⅱ)x≥z≥y,则,x2≥z2≥y2,由排序原理可得,原不等式成立。(6)放缩法,即要证A>B,可证A>C1,C1≥C2,…,Cn-1≥Cn,Cn>B(n∈N+).例8求证:【证明】,得证。例9已知a,b,c是△ABC的三条边长,m>0,求证:【证明】(因为a+b>c),得证。(7)引入参变量法。例10已知x,y∈R+,l,a,b为待定正数,求f(x,y)=的最小值。【解】设,则,f(x,y)=94/94 (a3+b3+3a2b+3ab2)=,等号当且仅当时成立。所以f(x,y)min=例11设x1≥x2≥x3≥x4≥2,x2+x3+x4≥x1,求证:(x1+x2+x3+x4)2≤4x1x2x3x4.獄质嶇僅痺鲒潰脫帧開。【证明】设x1=k(x2+x3+x4),依题设有≤k≤1,x3x4≥4,原不等式等价于(1+k)2(x2+x3+x4)2≤4kx2x3x4(x2+x3+x4),即鍥苋娛殫秽笾殇蕢谬藓。(x2+x3+x4)≤x2x3x4,因为f(k)=k+在上递减,所以(x2+x3+x4)=(x2+x3+x4)≤·3x2=4x2≤x2x3x4.所以原不等式成立。(8)局部不等式。例12已知x,y,z∈R+,且x2+y2+z2=1,求证:【证明】先证因为x(1-x2)=,所以同理,,所以94/94 例13已知0≤a,b,c≤1,求证:≤2。【证明】先证①即a+b+c≤2bc+2.即证(b-1)(c-1)+1+bc≥a.因为0≤a,b,c≤1,所以①式成立。同理三个不等式相加即得原不等式成立。(9)利用函数的思想。例14已知非负实数a,b,c满足ab+bc+ca=1,求f(a,b,c)=的最小值。【解】当a,b,c中有一个为0,另两个为1时,f(a,b,c)=,以下证明f(a,b,c)≥.不妨设a≥b≥c,则0≤c≤,f(a,b,c)=杂砖墳雖紜飯曇覡墾騾。因为1=(a+b)c+ab≤+(a+b)c,解关于a+b的不等式得a+b≥2(-c).考虑函数g(t)=,g(t)在[)上单调递增。又因为0≤c≤,所以3c2≤1.所以c2+a≥4c2.所以2≥所以f(a,b,c)=≥==≥94/94 下证0①c2+6c+9≥9c2+9≥0因为,所以①式成立。所以f(a,b,c)≥,所以f(a,b,c)min=2.几个常用的不等式。(1)柯西不等式:若ai∈R,bi∈R,i=1,2,…,n,则等号当且仅当存在λ∈R,使得对任意i=1,2,,n,ai=λbi,变式1:若ai∈R,bi∈R,i=1,2,…,n,则等号成立条件为ai=λbi,(i=1,2,…,n)。变式2:设ai,bi同号且不为0(i=1,2,…,n),则等号成立当且仅当b1=b2=…=bn.(2)平均值不等式:设a1,a2,…,an∈R+,记Hn=,Gn=,An=,则Hn≤Gn≤An≤Qn.即调和平均≤几何平均≤算术平均≤平方平均。轼栀嗶鑊绷瘍懔諍訝澤。其中等号成立的条件均为a1=a2=…=an.【证明】由柯西不等式得An≤Qn,再由Gn≤An可得Hn≤Gn,以下仅证Gn≤An.1)当n=2时,显然成立;2)设n=k时有Gk≤Ak,当n=k+1时,记=Gk+1.因为a1+a2+…+ak+ak+1+(k-1)Gk+1≥≥2kGk+1,所以a1+a2+…+ak+1≥(k+1)Gk+1,即Ak+1≥Gk+1.所以由数学归纳法,结论成立。94/94 (3)排序不等式:若两组实数a1≤a2≤…≤an且b1≤b2≤…≤bn,则对于b1,b2,…,bn的任意排列,有a1bn+a2bn-1+…+anb1≤≤a1b1+a2b2+…+anbn.尋头厭呛羈阴帥讕匦赞。【证明】引理:记A0=0,Ak=,则=(阿贝尔求和法)。证法一:因为b1≤b2≤…≤bn,所以≥b1+b2+…+bk.记sk=-(b1+b2+…+bk),则sk≥0(k=1,2,…,n)。所以-(a1b1+a2b2+…+anbn)=+snan≤0.最后一个不等式的理由是aj-aj+1≤0(j=1,2,…,n-1,sn=0),所以右侧不等式成立,同理可证左侧不等式。证法二:(调整法)考察,若,则存在。若(j≤n-1),则将与互换。因为≥0,所调整后,和是不减的,接下来若,则继续同样的调整。至多经n-1次调整就可将乱序和调整为顺序和,而且每次调整后和是不减的,这说明右边不等式成立,同理可得左边不等式。訪齙剛玺苏滥夹趕萤凭。例15已知a1,a2,…,an∈R+,求证;a1+a2+…+an.【证明】证法一:因为,…,≥2an.上述不等式相加即得≥a1+a2+…+an.94/94 证法二:由柯西不等式(a1+a2+…+an)≥(a1+a2+…+an)2,因为a1+a2+…+an>0,所以≥a1+a2+…+an.证法三:设a1,a2,…,an从小到大排列为,则,,由排序原理可得=a1+a2+…+an≥,得证。注:本讲的每种方法、定理都有极广泛的应用,希望读者在解题中再加以总结。第十章直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。如x2+y2=1是以原点为圆心的单位圆的方程。写韞僂谌虛鍤囈辮褻糝。2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。罴醬畝饼誊歿凑鈑繳锱。3.直线的倾斜角和斜率:直线向上的方向与x轴正方向所成的小于1800的正角,叫做它的倾斜角。规定平行于x轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。鲢診龄師該铃書銨鴇开。4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y0=k(x-x0);(3)斜截式:y=kx+b;(4)截距式:;(5)两点式:;(6)法线式方程:xcosθ+ysinθ=p(其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:(其中θ为该直线倾斜角),t的几何意义是定点P0(x0,y0)到动点P(x,y)的有向线段的数量(线段的长度前添加正负号,若P0P方向向上则取正,否则取负)。磚緙鹅綱谩擞鴻鑌纸蘚。5.到角与夹角:若直线l1,l2的斜率分别为k1,k2,将l1绕它们的交点逆时针旋转到与l2重合所转过的最小正角叫l1到l2的角;l1与l2所成的角中不超过900的正角叫两者的夹角。若记到角为θ,夹角为α,则tanθ=,tanα=.鬮煒鳍輥賠還鲂隊驼骡。94/94 6.平行与垂直:若直线l1与l2的斜率分别为k1,k2。且两者不重合,则l1//l2的充要条件是k1=k2;l1l2的充要条件是k1k2=-1。毕懍鲅鵑较惻飾顳矯泾。7.两点P1(x1,y1)与P2(x2,y2)间的距离公式:|P1P2|=。8.点P(x0,y0)到直线l:Ax+By+C=0的距离公式:。9.直线系的方程:若已知两直线的方程是l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0,则过l1,l2交点的直线方程为A1x+B1y+C1+λ(A2x+B2y+C2=0;由l1与l2组成的二次曲线方程为(A1x+B1y+C1)(A2x+B2y+C2)=0;与l2平行的直线方程为A1x+B1y+C=0().钆歷驾无醬赔隽驍韉贈。10.二元一次不等式表示的平面区域,若直线l方程为Ax+By+C=0.若B>0,则Ax+By+C>0表示的区域为l上方的部分,Ax+By+C0)。其圆心为,半径为。若点P(x0,y0)为圆上一点,则过点P的切线方程为荟蓥闶漸陸讣轾减鈿異。①14.根轴:到两圆的切线长相等的点的轨迹为一条直线(或它的一部分),这条直线叫两圆的根轴。给定如下三个不同的圆:x2+y2+Dix+Eiy+Fi=0,i=1,2,3.则它们两两的根轴方程分别为(D1-D2)x+(E1-E2)y+(F1-F2)=0;(D2-D3)x+(E2-E3)y+(F2-F3)=0;(D3-D1)x+(E3-E1)y+(F3-F1)=0。不难证明这三条直线交于一点或者互相平行,这就是著名的蒙日定理。鹏筛镐討颛办費叹摄虏。二、方法与例题1.坐标系的选取:建立坐标系应讲究简单、对称,以便使方程容易化简。例1在ΔABC中,AB=AC,∠A=900,过A引中线BD的垂线与BC交于点E,求证:∠ADB=∠CDE。糝殒锔雋駛鶯诼垆辐驄。[证明]见图10-1,以A为原点,AC所在直线为x轴,建立直角坐标系。设点B,C坐标分别为(0,2a),(2a,0),则点D坐标为(a,0)。直线BD方程为,①直线BC方程为x+y=2a,②设直线BD和AE的斜率分别为k1,k2,则k1=-2。因为BDAE,所以k1k2=-1.所以,所以直线AE方程为,由解得点E坐标为94/94 。頜层铢壶鲜儀計尧當涇。所以直线DE斜率为因为k1+k3=0.所以∠BDC+∠EDC=1800,即∠BDA=∠EDC。例2半径等于某个正三角形高的圆在这个三角形的一条边上滚动。证明:三角形另两条边截圆所得的弧所对的圆心角为600。滚伛钮硕鷙耸蒋忆貯赠。[证明]以A为原点,平行于正三角形ABC的边BC的直线为x轴,建立直角坐标系见图10-2,设⊙D的半径等于BC边上的高,并且在B能上能下滚动到某位置时与AB,AC的交点分别为E,F,设半径为r,则直线AB,AC的方程分别为,.设⊙D的方程为(x-m)2+y2=r2.①设点E,F的坐标分别为(x1,y1),(x2,y2),则,分别代入①并消去y得铣饜酝贻龙鵠臚拧奥凭。所以x1,x2是方程4x2-2mx+m2-r2=0的两根。由韦达定理,所以|EF|2=(x1-x2)2+(y1-y2)2=(x1-x2)2+3(x1-x2)2=4(x1+x2)2-4x1x2=m2-(m2-r2)=r2.所以|EF|=r。所以∠EDF=600。2.到角公式的使用。例3设双曲线xy=1的两支为C1,C2,正ΔPQR三顶点在此双曲线上,求证:P,Q,R不可能在双曲线的同一支上。撾鉬辙魇侨絢绾来诔緊。[证明]假设P,Q,R在同一支上,不妨设在右侧一支C1上,并设P,Q,R三点的坐标分别为且0|F1F2|=2c).碱賢矫攝胆嘮闊锑恺緊。第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(00)。3.椭圆中的相关概念,对于中心在原点,焦点在x轴上的椭圆,a称半长轴长,b称半短轴长,c称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a,0),(0,±b),(±c,0);与左焦点对应的准线(即第二定义中的定直线)为,与右焦点对应的准线为;定义中的比e称为离心率,且,由c2+b2=a2知00),F1(-c,0),F2(c,0)是它的两焦点。若P(x,y)是椭圆上的任意一点,则|PF1|=a+ex,|PF2|=a-ex.谢齿毁览賬缲财鳞蠼洁。5.几个常用结论:1)过椭圆上一点P(x0,y0)的切线方程为;2)斜率为k的切线方程为;3)过焦点F2(c,0)倾斜角为θ的弦的长为。6.双曲线的定义,第一定义:满足||PF1|-|PF2||=2a(2a0)的点P的轨迹;第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。7.双曲线的方程:中心在原点,焦点在x轴上的双曲线方程为,参数方程为(为参数)。焦点在y轴上的双曲线的标准方程为94/94 。8.双曲线的相关概念,中心在原点,焦点在x轴上的双曲线(a,b>0),a称半实轴长,b称为半虚轴长,c为半焦距,实轴的两个端点为(-a,0),(a,0).左、右焦点为F1(-c,0),F2(c,0),对应的左、右准线方程分别为离心率,由a2+b2=c2知e>1。两条渐近线方程为,双曲线与有相同的渐近线,它们的四个焦点在同一个圆上。若a=b,则称为等轴双曲线。吶韦桢阖践鴟諍齑蘭贍。9.双曲线的常用结论,1)焦半径公式,对于双曲线,F1(-c,0),F2(c,0)是它的两个焦点。设P(x,y)是双曲线上的任一点,若P在右支上,则|PF1|=ex+a,|PF2|=ex-a;若P(x,y)在左支上,则|PF1|=-ex-a,|PF2|=-ex+a.萊郦晋壩辭終裥俠輿擊。2)过焦点的倾斜角为θ的弦长是。10.抛物线:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫焦点,直线l叫做抛物线的准线。若取经过焦点F且垂直于准线l的直线为x轴,x轴与l相交于K,以线段KF的垂直平分线为y轴,建立直角坐标系,设|KF|=p,则焦点F坐标为,准线方程为,标准方程为y2=2px(p>0),离心率e=1.鷲诅捡瞇钗骘蓀剝黃絷。11.抛物线常用结论:若P(x0,y0)为抛物线上任一点,1)焦半径|PF|=;2)过点P的切线方程为y0y=p(x+x0);3)过焦点倾斜角为θ的弦长为。12.极坐标系,在平面内取一个定点为极点记为O,从O出发的射线为极轴记为Ox轴,这样就建立了极坐标系,对于平面内任意一点P,记|OP|=ρ,∠xOP=θ,则由(ρ,θ)唯一确定点P的位置,(ρ,θ)称为极坐标。纫绾懔賬鍘禅耧啞绵鍇。13.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比为常数e的点P,若00).F坐标为(-c,0).设另一焦点为。连结,OP,则。所以|FP|+|PO|=(|FA|+|A|)=a.伞箋内鍶乐捞忆瓊柠锴。所以点P的轨迹是以F,O为两焦点的椭圆(因为a>|FO|=c),将此椭圆按向量m=(,0)平移,得到中心在原点的椭圆:。由平移公式知,所求椭圆的方程为94/94 缅殲伤却兗輔宮礡酽弃。[解法二]相关点法。设点P(x,y),A(x1,y1),则,即x1=2x+c,y1=2y.又因为点A在椭圆上,所以代入得关于点P的方程为。它表示中心为,焦点分别为F和O的椭圆。骊嘗丛烟协彈噜約戲虛。例4长为a,b的线段AB,CD分别在x轴,y轴上滑动,且A,B,C,D四点共圆,求此动圆圆心P的轨迹。畫價鸚诠喲贳區綢躉骤。[解]设P(x,y)为轨迹上任意一点,A,B,C,D的坐标分别为A(x-,0),B(x+,0),C(0,y-),D(0,y+),记O为原点,由圆幂定理知|OA|•|OB|=|OC|•|OD|,用坐标表示为,即鏜飘鳶颗奁娱侨聹屿洒。当a=b时,轨迹为两条直线y=x与y=-x;当a>b时,轨迹为焦点在x轴上的两条等轴双曲线;当a0,b>0)的右焦点F作B1B2轴,交双曲线于B1,B2两点,B2与左焦点F1连线交双曲线于B点,连结B1B交x轴于H点。求证:H的横坐标为定值。辩诿驂籌怃詠鰈蠷嚳擊。[证明]设点B,H,F的坐标分别为(asecα,btanα),(x0,0),(c,0),则F1,B1,B2的坐标分别为(-c,0),(c,),(c,),因为F1,H分别是直线B2F,BB1与x轴的交点,所以崢罚饋蹤擁袭驻詐覬絷。①所以。由①得代入上式得即(定值)。注:本例也可借助梅涅劳斯定理证明,读者不妨一试。94/94 例7设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,点C在准线上,且BC//x轴。证明:直线AC经过定点。誕珏顳鰭晕净頗諤凯鏘。[证明]设,则,焦点为,所以,,,。由于,所以•y2-y1=0,即=0。因为,所以。所以,即。所以,即直线AC经过原点。刽掺韉挣櫧煢闺賅茧弒。例8椭圆上有两点A,B,满足OAOB,O为原点,求证:为定值。[证明]设|OA|=r1,|OB|=r2,且∠xOA=θ,∠xOB=,则点A,B的坐标分别为A(r1cosθ,r1sinθ),B(-r2sinθ,r2cosθ)。由A,B在椭圆上有胶哜閶罚测丟錕轎與虚。即①②①+②得(定值)。4.最值问题。例9设A,B是椭圆x2+3y2=1上的两个动点,且OAOB(O为原点),求|AB|的最大值与最小值。鳏鸕鐓铃爐缢钺鑑緩驟。[解]由题设a=1,b=,记|OA|=r1,|OB|=r2,,参考例8可得=4。设m=|AB|2=,祕閨鍵儕瓯鱧遠鋮鯛灑。94/94 因为,且a2>b2,所以,所以b≤r1≤a,同理b≤r2≤a.所以。又函数f(x)=x+在上单调递减,在上单调递增,所以当t=1即|OA|=|OB|时,|AB|取最小值1;当或时,|AB|取最大值。陘輔銨澩礙紛赶錙类赢。例10设一椭圆中心为原点,长轴在x轴上,离心率为,若圆C:1上点与这椭圆上点的最大距离为,试求这个椭圆的方程。泻襠鐵補粤骄謗闥饽凿。[解]设A,B分别为圆C和椭圆上动点。由题设圆心C坐标为,半径|CA|=1,因为|AB|≤|BC|+|CA|=|BC|+1,所以当且仅当A,B,C共线,且|BC|取最大值时,|AB|取最大值,所以|BC|最大值为钨紡釤閭綆硗诌顧癢糾。因为;所以可设椭圆半长轴、半焦距、半短轴长分别为2t,,t,椭圆方程为,并设点B坐标为B(2tcosθ,tsinθ),则|BC|2=(2tcosθ)2+=3t2sin2θ-3tsinθ++4t2=-3(tsinθ+)2+3+4t2.慳瀏遲嘘缨預蝸饞闕锵。若,则当sinθ=-1时,|BC|2取最大值t2+3t+,与题设不符。若t>,则当sinθ=时,|BC|2取最大值3+4t2,由3+4t2=7得t=1.所以椭圆方程为。5.直线与二次曲线。例11若抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求a的取值范围。[解]抛物线y=ax2-1的顶点为(0,-1),对称轴为y轴,存在关于直线x+y=0对称两点的条件是存在一对点P(x1,y1),(-y1,-x1),满足y1=a且-x1=a(-y1)2-1,相减得94/94 x1+y1=a(),因为P不在直线x+y=0上,所以x1+y1≠0,所以1=a(x1-y1),即x1=y1+譜廩軾痪輿猶苏鮐湿弑。所以此方程有不等实根,所以,求得,即为所求。例12若直线y=2x+b与椭圆相交,(1)求b的范围;(2)当截得弦长最大时,求b的值。[解]二方程联立得17x2+16bx+4(b2-1)=0.由Δ>0,得

10000+的老师在这里下载备课资料