高中数学 基本不等式课件
加入VIP免费下载

高中数学 基本不等式课件

ID:1117473

大小:497.5 KB

页数:31页

时间:2022-05-06

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第2课时 基本不等式 1.定理1(重要不等式):如果a,b∈R,那么a2+b2≥2ab,当且仅当时,等号成立.自学导引a=b正数 基础自测答案C 答案B 答案A [思维启迪]解答本题可先对a+b,b+c,c+a分别使用均值不等式,再把它们相乘或相加得到. 规律方法(1)用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备均值不等式的结构和条件,然后合理地选择均值不等式或其变形形式进行证明.(2)本题证明过程中多次用到基本不等式,然后利用同向不等式的可加性或可乘性得出所证的不等式,要注意不等式性质的使用条件,对“当且仅当……时取等号”这句话要搞清楚. [思维启迪]解答本题可灵活使用“1”的代换或对条件进行必要的变形,再用基本不等式求得和的最小值. 规律方法在应用基本不等式求最值时,分以下三步进行:(1)首先看式子能否出现和(或积)的定值,若不具备,需对式子变形,凑出需要的定值;(2)其次,看所用的两项是否同正,若不满足,通过分类解决,同负时,可提取(-1)变为同正;(3)利用已知条件对取等号的情况进行验证.若满足,则可取最值,若不满足,则可通过函数单调性或导数解决. 【变式2】已知x>0,y>0,且x+2y+xy=30,求xy的最大值. 题型三 基本不等式的实际应用【例3】甲、乙两公司在同一电脑耗材厂以相同价格购进电脑芯片.甲、乙两公司分别购芯片各两次,两次的芯片价格不同,甲公司每次购10000片芯片,乙公司每次购10000元芯片.哪家公司平均成本较低?请说明理由. [思维启迪]先建立数学模型,再用基本不等式求解. 规律方法应用不等式解决问题时,关键是如何把等量关系、不等量关系转化为不等式的问题来解决,也就是建立数学模型是解应用题的关键,最后利用不等式的知识来解. 【变式3】某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米造价40元,两侧砌砖墙,每米造价45元,顶部每平方米造价20元.试问:(1)仓库底面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 答案[3,+∞) 本题易出现的错误有两个方面:一是不会“凑”,不能根据函数解析式的特征适当变形凑出两式之积为定值;二是利用基本不等式求解最值时,忽视因式的取值范围,直接套用基本不等式求最值. 答案(-∞,-1]∪[3,+∞) 利用基本不等式求最值,关键是对式子恰当的变形,合理构造“和式”与“积式”的互化,必要时可多次应用基本不式.注意一定要求出使“=”成立的自变量的值,这也是进一步检验是否存在最值的重要依据. 空白演示单击输入您的封面副标题

10000+的老师在这里下载备课资料