第四节 数列求和
2.倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法.
4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.5.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.
6.并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.例如,Sn=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.
1.裂项相消法的前提是什么?【提示】数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后相互抵消.2.若数列{an}是等比数列,则数列{|an|}的前n项和可用什么方法求解?【提示】数列{|an|}仍然是等比数列,可用公式法求解.
【答案】C
2.一个球从100m高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A.100+200×(1-2-9)B.100+100(1-2-9)C.200(1-2-9)D.100(1-2-9)【答案】A
3.(2013·合肥质检)若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=( )A.15B.12C.-12D.-15【解析】∵an=(-1)n(3n-2),∴a1+a2+…+a10=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.【答案】A
【答案】A
5.设数列{an}的通项an=4n-1,数列{bn}的通项bn=3n-1,则数列{an·bn}的前n项和Tn=________.
已知函数f(x)=2x-3x-1,点(n,an)在f(x)的图象上,an的前n项和为Sn.(1)求使an<0的n的最大值;(2)求Sn.【思路点拨】(1)由条件,求出an,利用数列的性质求an<0的n的最大值;(2)将{an}转化为两个特殊数列求和.
【尝试解答】(1)∵点(n,an)在函数f(x)=2x-3x-1的图象上,∴an=2n-3n-1,∵an<0,∴2n-3n-1<0,即2n<3n+1,又∵n∈N*,∴n≤3,即n的最大值为3.
1.数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列求和.2.常见类型及方法(1)an=kn+b,利用等差数列前n项和公式直接求解;(2)an=a·qn-1,利用等比数列前n项和公式直接求解;(3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列,采用分组求和法求{an}的前n项和.
公差不为0的等差数列{an}中,a1=2,且a1,a3,a7成等比数列.(1)求数列{an}的通项公式;(2)若数列{cn}的前n项和为Sn,且nancn=1,求证:Sn<1.【思路点拨】(1)由a1,a3,a7成等比数列,求得公差d,进而确定{an}的通项公式.(2)根据{cn}的通项公式特征,利用裂项相消法求得Sn,从而证得Sn<1.
【尝试解答】(1)设等差数列{an}的公差为d,则a3=2+2d,a7=2+6d.∵a1,a3,a7成等比数列,∴(2+2d)2=2(2+6d),又d≠0,∴可求d=1.∴an=a1+(n-1)d=n+1,∴数列{an}的通项公式为an=n+1.
数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*).(1)求数列{an}的通项公式an;(2)求数列{nan}的前n项和Tn.【思路点拨】由an+1=Sn+1-Sn得Sn与Sn+1的递推关系,求得Sn和an,由an的特征,利用错位相减法求数列{nan}的前n项和Tn.
1.本例(2)求Tn时,易盲目利用错位相减法直接求和,忽视讨论n=1的情形.2.(1)如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和.一般是和式两边同乘以等比数列{bn}的公比,若{bn}的公比为参数,应分公比等于1和不等于1两种情况讨论.(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”.即公比q的同次幂项相减,转化为等比数列求和.
解决非等差、等比数列的求和,主要有两种思路(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和.
1.裂项相消法,分裂通项是否恰好等于相应的两项之差.2.在正负项抵消后,是否只剩下第一项和最后一项,或有时前面剩下两项,后面也剩下两项,未消去的项有前后对称的特点.
数列求和是高考的热点,主要涉及等差、等比数列求和、错位相减法求和、裂项相消法求和与并项法求和,题目呈现方式多样,在选择题、填空题中以考查基础知识为主,在解答题中以考查错位相减法和裂项相消法求和为主,求解的关键是抓住通项公式的特征,正确变形,分清项数求和.
易错辨析之八 通项遗漏导致错位相减求和错误(2012·浙江高考改编)已知数列{an}的前n项和为Sn,且Sn=2n2+n-3,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.(1)求an,bn;(2)求数列{an·bn}的前n项和Tn.【错解】(1)由Sn=2n2+n-3,得n≥2时,Sn-1=2(n-1)2+(n-1)-3,∴an=2n2-2(n-1)2+1=4n-1,由4n-1=an=4log2bn+3,得bn=2n-1,n∈N*.
(2)由(1)知anbn=(4n-1)·2n-1,n∈N*,所以Tn=3+7×2+11×22+…+(4n-1)·2n-1,2Tn=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,所以2Tn-Tn=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5.故Tn=(4n-5)2n+5,n∈N*.
错因分析:(1)求an,忽视n=1的情形,错求an,导致后续问题不能正确求解.(2)错位相减求和时,弄错等比数列的项数,盲目认为除首、末项外成等比数列.
防范措施:(1)由Sn求an,当n=1时,a1=S1检验是否满足an=Sn-Sn-1(n≥2),若不满足,应分段表示an,从而求Tn时,应分类讨论.(2)由于{anbn}的通项分段表示,求Tn时,不仅注意对n进行讨论,而且在写出“Tn”与“qTn”的表达式时应特别注意将两式“错项对齐”.即公比q的同次幂项相减,转化为等比数列求和.
1.(2012·课标全国卷)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为( )A.3690 B.3660 C.1845 D.1830【解析】∵an+1+(-1)nan=2n-1,当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,从而a2k+1+a2k-1=2,a2k+3+a2k+1=2,因此a2k+3=a2k-1,∴a1=a5=a9=…=a61,
【答案】D
课后作业(三十二)