高一数学备课组数列通项
一、常用数列通项1,2,3,4,……1,1,3,5,7,9,……3,5,7,9,11,……2,4,6,8,10,……0,2,4,6,8,……2,4,8,16,32,……1,4,9,16,25,……1,-1,1,-1,1,……-1,1,-1,1,-1,……an=nan=2n-1an=2n+1an=2nan=2(n-1)an=2nan=n2an=(-1)n-1an=(-1)n
数列通项9,99,999,9999,99999,……2,22,222,2222,22222,……1,22,333,4444,55555,……2,3,10,15,26,35,……二、观察法求通项:
三、特殊数列的通项:等差数列:______________________________________等比数列:_______________________________________此法的前提:_______________________________________an=a1+(n-1)dan=am+(n-m)dan=amqn-man=a1qn-1(a1、q≠0)是否能判断此数列是等差数列还是等比数列
公式法求通项:特征:______________;公式:______________说明:1)单由Sn-Sn-1=an求an,则有n_;2)由Sn-Sn-1=an求an,若n=1时,由an有________,则an=______________3)由Sn-Sn-1=an求an,若n=1时,由an有________,则an=__________________已知Sn,求an≥2a1=S1Sn-Sn-1a1≠S1
1、已知数列{an}的前n项和为Sn=3n2+2n,求an解:当n≥2时,an=Sn-Sn-1=6n-1当n=1时,a1=S1=5又由an=6n-1得a1=52、已知数列{an}的前n项和为Sn=3n+1,求an解:当n≥2时,an=Sn-Sn-1=3n-3n-1=3n-1(3-1)=2×3n-1当n=1时,a1=S1=4故an=故an=6n-1又由an=2×3n-1得2×31-1=2≠a1
应用定义解决问题:例:已知数列{an}中,a1=2,an-an-1=2,(n≥2)求an变1:已知数列{an}中,a1=2,an-an-1=n,(n≥2)求an变2:已知数列{an}中,a1=2,an-an-1=2n,(n≥2)求an归纳:在数列{an}中,已知a1,an-an-1=f(n),(n≥2)(其中f(n)可求和)求an
变:已知数列{an}中,a1=2,an-2an-1=2,(n≥2)求an变:已知数列{an}中,a1=2,an-2an-1=2n,(n≥2)求an