(备战中考)中考数学深度复习讲义
加入VIP免费下载

(备战中考)中考数学深度复习讲义

ID:1169391

大小:435.39 KB

页数:9页

时间:2022-06-21

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
(备战中考)2012年中考数学深度复习讲义(教案)类型之一代数类型的综合题代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法等.解代数综合题要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.例1.(2011山东滨州,25,12分)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC。点A、B在抛物线造型上,且点A到水平面的距离AC=4O米,点B到水平面距离为2米,OC=8米。(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)【答案】解:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系………………1分2设抛物线的函数解析式为y=ax,………………2分由题意知点A的坐标为(4,8)。且点A在抛物线上,………………3分2112所以8=a×4,解得a=,故所求抛物线的函数解析式为y=x………………4分22(2)找法:延长AC,交建筑物造型所在抛物线于点D,………………5分则点A、D关于OC对称。连接BD交OC于点P,则点P即为所求。………………6分(3)由题意知点B的横坐标为2,且点B在抛物线上,所以点B的坐标为(2,2)………………7分又知点A的坐标为(4,8),所以点D的坐标为(-4,8)………………8设直线BD的函数解析式为y=kx+b,………………9 ⎧2kb+=2则有⎨………………10⎩−4kb+=8解得k=-1,b=4.故直线BD的函数解析式为y=-x+4,………………11把x=0代入y=-x+4,得点P的坐标为(0,4)两根支柱用料最省时,点O、P之间的距离是4米。………………12例2:(2011四川重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x123456789价格y1(元/560580600620640660680700720件)随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a22222的整数值.(参考数据:99=9801,98=9604,97=9409,96=9216,95=9025)【答案】(1)y1与x之间的函数关系式为y1=20x+540,y2与x之间满足的一次函数关系式为y2=10x+630.(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)=(0.1x+1.1)(1000−50−30−20x−540)=(0.1x+1.1)(380−20x)=-2x2+160x+418=-2(x-4)2+450,(1≤x≤9,且x取整数)∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2) =(-0.1x+2.9)(1000-50-30-10x-630)=(-0.1x+2.9)(290-10x)=(x-29)2,(10≤x≤12,且x取整数),当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.(3)去年12月份销售量为:-0.1×12+0.9=1.7(万件),今年原材料的价格为:750+60=810(元),今年人力成本为:50×(1+20﹪)=60(元),由题意,得5×[1000(1+a﹪)-810-60-30]×1.7(1-0.1a﹪)=1700,99±9401设t=a﹪,整理,得10t2-99t+10=0,解得t=,∵972=9409,962=9216,20而9401更接近9409.∴9401=97.∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.∵1.7(1-0.1a﹪)≥1,∴a2≈980舍去,∴a≈10.答:a的整数值为10.类型之二几何类型的综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的.例2.(·龙岩市)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(-2,4),试求MC的长及直线DC的解析式.【解析】此题考查圆的切线的判定方法及一次函数解析式的判定,(1)切线的判定要从定义上去判定:过半径的外端,且垂直于半径的直线为圆的切线,所以此题要连接OM,然后证明OM ⊥DC,这里平行线对角的转化起到了关键的作用;(2)MC的长借助于勾股定理建立方程而求出,10要求直线DC的解析式需要再求出点C的坐标根据MC的长即可以求出点C的坐标(AEA,0),3从而求出直线DC的解析式.【答案】(1)答:直线DC与⊙O相切于点M.证明如下:连OM,∵DO∥MB,∴∠1=∠2,∠3=∠4.∵OB=OM,∴∠1=∠3.∴∠2=∠4.⎧AO=OM⎪在△DAO与△DMO中,⎨∠=∠∠24⎪⎩DO=DO∴△DAO≌△DMO.∴∠OMD=∠OAD.由于FA⊥x轴于点A,∴∠OAD=90°.∴∠OMD=90°.即OM⊥DC.∴DC切⊙O于M.(2)解:由D(-2,4)知OA=2(即⊙O的半径),AD=4.由(1)知DM=AD=4,由△OMC∽△DAC,MCOM21知AEA=AEA=AEA=AEA,∴AC=2MC.ACAD42在Rt△ACD中,CD=MC+4.2228由勾股定理,有(2MC)+4=(MC+4),解得MC=AEA或MC=0(不合,舍去).3810∴MC的长为AEA,∴点C(AEA,0).33 设直线DC的解析式为y=kx+b.⎧3⎧10k=−⎪0=k+b⎪⎪4则有⎨3解得⎨⎪4=−2k+b.⎪b=5.⎩⎪⎩235∴直线DC的解析式为y=-AEAx+AEA.422(·益阳)△ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.Ⅰ.证明:△BDG≌△CEF;Ⅱ.探究:怎样在铁片上准确地画出正方形.小聪和小明各给出了一种想法,请你在...Ⅱ.a.和.Ⅱ.b.的两个问题中选择一个你喜欢的问题解答....................如果两题都解,只以.........Ⅱ.a.的解答记分......Ⅱa.小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了.设△ABC的边长为2,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化). Ⅱb.小明想:不求正方形的边长也能画出正方形.具体作法是:①在AB边上任取一点G’,如图作正方形G’D’E’F’;②连结BF’并延长交AC于F;③作FE∥F’E’交BC于E,FG∥F′G′交AB于G,GD∥G’D’交BC于D,则四边形DEFG即为所求.你认为小明的作法正确吗?说明理由.类型之三几何与代数相结合的综合题几何与代数相结合的综合题是初中数学中涵盖广、综合性最强的题型.它可以包含初中阶段所学的代数与几何的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力.例3.(·恩施自治州)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n. 图1(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围.(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证222BD+CE=DE.图2(4)222在旋转过程中,(3)中的等量关系BD+CE=DE是否始终成立,若成立,请证明,若不成立,请说明理由.【解析】解决问题(1)(2)的关键是利用图中的相似三角形;解决问题(3)时利用(2) 222中的m、n的关系求出点D的坐标,进而分别求出BD、CE、DE的值;解决问题(4)时,通常方法是先猜想其结论成立,根据结论的特征,尝试构造直角三角形,则问题可轻松获解.【答案】解:(1)∆ABE∽∆DAE,∆ABE∽∆DCA∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°∴∠BAE=∠CDA又∠B=∠C=45°∴∆ABE∽∆DCABEBA(2)∵∆ABE∽∆DCA,∴=CACD由依题意可知CA=BA=2m22∴=,∴m=2nn自变量n的取值范围为1

10000+的老师在这里下载备课资料