2021年四川省成都市中考数学模拟试题含解析
加入VIP免费下载

2021年四川省成都市中考数学模拟试题含解析

ID:1171091

大小:310.24 KB

页数:27页

时间:2022-06-24

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
四川省成都市中考数学试卷一、选择题(本大题共10个小題,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡1.(3分)比﹣3大5的数是(  )A.﹣15B.﹣8C.2D.82.(3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是(  )A.B.C.D.3.(3分)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为(  )A.5500×104B.55×106C.5.5×107D.5.5×1084.(3分)在平面直角坐标系中,将点(﹣2,3)向右平移4个单位长度后得到的点的坐标为(  )A.(2,3)B.(﹣6,3)C.(﹣2,7)D.(﹣2.﹣1)5.(3分)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为(  )A.10°B.15°C.20°D.30°6.(3分)下列计算正确的是(  )A.5ab﹣3a=2bB.(﹣3a2b)2=6a4b2C.(a﹣1)2=a2﹣1D.2a2b÷b=2a27.(3分)分式方程x-5x-1+2x=1的解为(  ) A.x=﹣1B.x=1C.x=2D.x=﹣28.(3分)某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是(  )A.42件B.45件C.46件D.50件9.(3分)如图,正五边形ABCDE内接于⊙O,P为DE上的一点(点P不与点D重合),则∠CPD的度数为(  )A.30°B.36°C.60°D.72°10.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是(  )A.c<0B.b2﹣4ac<0C.a﹣b+c<0D.图象的对称轴是直线x=3二、填空题(术大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若m+1与﹣2互为相反数,则m的值为  .12.(4分)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为  . 13.(4分)已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是  .14.(4分)如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为  .三、解答题(本大题共6个小题,共54分解答过程写在答题卡上15.(12分)(1)计算:(π﹣2)0﹣2cos30°-16+|1-3|.(2)解不等式组:3(x-2)≤4x-5,①5x-24<1+12x.②16.(6分)先化简,再求值:(1-4x+3)÷x2-2x+12x+6,其中x=2+1.17.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题: (1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.18.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,连接OB,求△ABO的面积.20.(10分)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:AC=CD; (2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.一、B卷填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)估算:37.7≈  (结果精确到1)22.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为  .23.(4分)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为  24.(4分)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为  .25.(4分)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为152,则△OAB内部(不含边界)的整点的个数为  . 二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=12x+12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?27.(10分)如图1,在△ABC中,AB=AC=20,tanB=34,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.28.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C (3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式. 四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小題,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡1.(3分)比﹣3大5的数是(  )A.﹣15B.﹣8C.2D.8【解答】解:﹣3+5=2.故选:C.2.(3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是(  )A.B.C.D.【解答】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.3.(3分)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为(  )A.5500×104B.55×106C.5.5×107D.5.5×108【解答】解:科学记数法表示:5500万=55000000=5.5×107故选:C.4.(3分)在平面直角坐标系中,将点(﹣2,3)向右平移4个单位长度后得到的点的坐标为(  )A.(2,3)B.(﹣6,3)C.(﹣2,7)D.(﹣2.﹣1) 【解答】解:点(﹣2,3)向右平移4个单位长度后得到的点的坐标为(2,3).故选:A.5.(3分)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为(  )A.10°B.15°C.20°D.30°【解答】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°﹣30°=15°,故选:B.6.(3分)下列计算正确的是(  )A.5ab﹣3a=2bB.(﹣3a2b)2=6a4b2C.(a﹣1)2=a2﹣1D.2a2b÷b=2a2【解答】解:A选项,5ab与3b不属于同类项,不能合并,选项错误,B选项,积的乘方(﹣3a2b)2=(﹣3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a﹣1)2=a2﹣2a+1,选项错误D选项,单项式除法,计算正确故选:D.7.(3分)分式方程x-5x-1+2x=1的解为(  )A.x=﹣1B.x=1C.x=2D.x=﹣2【解答】解:方程两边同时乘以x(x﹣1)得,x(x﹣5)+2(x﹣1)=x(x﹣1),解得x=﹣1, 把x=﹣1代入原方程的分母均不为0,故x=﹣1是原方程的解.故选:A.8.(3分)某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是(  )A.42件B.45件C.46件D.50件【解答】解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.9.(3分)如图,正五边形ABCDE内接于⊙O,P为DE上的一点(点P不与点D重合),则∠CPD的度数为(  )A.30°B.36°C.60°D.72°【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD=360°5=72°,∴∠CPD=12∠COD=36°,故选:B.10.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是(  ) A.c<0B.b2﹣4ac<0C.a﹣b+c<0D.图象的对称轴是直线x=3【解答】解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2﹣4ac>0,故B错误;C.当x=﹣1时,y<0,即a﹣b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x=1+52=3,故D正确.故选:D.二、填空题(术大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若m+1与﹣2互为相反数,则m的值为 1 .【解答】解:根据题意得:m+1﹣2=0,解得:m=1,故答案为:1.12.(4分)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为 9 .【解答】解:∵AB=AC,∴∠B=∠C, 在△BAD和△CAE中,∠BAD=∠CAEAB=AC∠B=∠C,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.13.(4分)已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是 k<3 .【解答】解:y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故答案为k<3;14.(4分)如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为 4 .【解答】解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=12AB=12×8=4.故答案为4.三、解答题(本大题共6个小题,共54分解答过程写在答题卡上 15.(12分)(1)计算:(π﹣2)0﹣2cos30°-16+|1-3|.(2)解不等式组:3(x-2)≤4x-5,①5x-24<1+12x.②【解答】解:(1)原式=1﹣2×32-4+3-1,=1-3-4+3-1,=﹣4.(2)3(x-2)≤4x-5,①5x-24<1+12x.②由①得,x≥﹣1,由②得,x<2,所以,不等式组的解集是﹣1≤x<2.16.(6分)先化简,再求值:(1-4x+3)÷x2-2x+12x+6,其中x=2+1.【解答】解:原式=(x+3x+3-4x+3)×2(x+3)(x-1)2=x-1x+3×2(x+3)(x-1)2=2x-1将x=2+1代入原式=22+1-1=217.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图; (2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.【解答】解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×1290=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×2490=560(人),答:该校对在线阅读最感兴趣的学生有560人.18.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【解答】解:作CE⊥AB于E,则四边形CDBE为矩形, ∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE=AECE,∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6,答:起点拱门CD的高度约为6米.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,连接OB,求△ABO的面积.【解答】解:(1)由y=12x+5y=-2x得x=-2y=4,∴A(﹣2,4),∵反比例函数y=kx的图象经过点A, ∴k=﹣2×4=﹣8,∴反比例函数的表达式是y=-8x;(2)解y=-8xy=12x+5得x=-2y=4或x=-8y=1,∴B(﹣8,1),由直线AB的解析式为y=12x+5得到直线与x轴的交点为(﹣10,0),∴S△AOB=12×10×4-12×10×1=15.20.(10分)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:AC=CD;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.【解答】证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴AC=CD(2)连接AC, ∵CE=1,EB=3,∴BC=4∵AC=CD∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴ACCE=CBAC∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB=AC2+BC2=25∴⊙O的半径为5(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴PAPC=PCPB=ACBC=24=12 ∴PC=2PA,PC2=PA•PB∴4PA2=PA×(PA+25)∴PA=253∴PO=553∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴ACOH=BCPH=ABPO即2OH=4PH=25553=65∴PH=103,OH=53∴HQ=OQ2-OH2=253∴PQ=PH+HQ=10+253一、B卷填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)估算:37.7≈ 6 (结果精确到1)【解答】解:∵36<37.7<49,∴6<37.7<7,∴37.7≈6.故答案为:622.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为 ﹣2 .【解答】解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,x12+x22-x1x2=(x1+x2)2-3x1x2=4﹣3(k﹣1)=13,k=﹣2,故答案为:﹣2. 23.(4分)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为 20 【解答】解:设盒子中原有的白球的个数为x个,根据题意得:x+510+x+5=57,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故答案为:20;24.(4分)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为 3 .【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=33,A′C=233,∴A'C+B'C的最小值为3,故答案为:3. 25.(4分)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为152,则△OAB内部(不含边界)的整点的个数为 4或5或6 .【解答】解:设B(m,n),∵点A的坐标为(5,0),∴OA=5,∵△OAB的面积=12×5•n=152,∴n=3,结合图象可以找到其中的一种情况:(以一种为例)当2<m<3时,有6个整数点;当3<m<92时,有5个整数点;当m=3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式; (2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=12x+12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【解答】解:(1)设函数的解析式为:y=kx+b(k≠0),由图象可得,k+b=70005k+b=5000,解得,k=-500b=7500,∴y与x之间的关系式:y=﹣500x+7500;(2)设销售收入为w万元,根据题意得,w=yp=(﹣500x+7500)(12x+12),即w=﹣250(x﹣7)2+16000,∴当x=7时,w有最大值为16000,此时y=﹣500×7+7500=4000(元)答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.27.(10分)如图1,在△ABC中,AB=AC=20,tanB=34,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由. 【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE.(2)解:如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,则AM=BM•tanB=4k×34=3k,由勾股定理,得到AB2=AM2+BM2,∴202=(3k)2+(4k)2,∴k=4或﹣4(舍弃),∵AB=AC,AM⊥BC,∴BC=2BM=2•4k=32,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA, ∴ABCB=DBAB,∴DB=AB2CB=20232=252,∵DE∥AB,∴AEAC=BDBC,∴AE=AC⋅BDBC=20×25232=12516.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∴BM=CM=12BC=12×32=16,在Rt△ABM中,由勾股定理,得AM=AB2-BM2=202-162=12,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴ANAM=AFAD=tan∠ADF=tanB=34,∴AN=34AM=34×12=9,∴CH=CM﹣MH=CM﹣AN=16﹣9=7, 当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=14,∴BD=BC﹣CD=32﹣14=18,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=18.28.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.【解答】解:(1)由题意得:4a-2b+c=5,a-b+c=09a+3b+c=0,解得a=1b=-2c=-3,∴抛物线的函数表达式为y=x2﹣2x﹣3.(2)∵抛物线与x轴交于B(﹣1,0),C(3,0),∴BC=4,抛物线的对称轴为直线x=1,如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2, 由翻折得C′B=CB=4,在Rt△BHC′中,由勾股定理,得C′H=C'B2-BH2=42-22=23,∴点C′的坐标为(1,23),tan∠C'BH=C'HBH=232=3,∴∠C′BH=60°,由翻折得∠DBH=12∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=233,∴点D的坐标为(1,233).(3)取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P. ∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则0=-k+b233=k+b,解得k=33b=33,∴直线BP的函数表达式为y=33x+33.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS), ∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴∠CC'Q=12∠CC'B=30°.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×33=33,∴点E的坐标为(0,-33).设直线BP的函数表达式为y=mx+n,则0=-m+n-33=n,解得m=-33n=-33,∴直线BP的函数表达式为y=-33x-33.综上所述,直线BP的函数表达式为y=33x+33或y=-33x-33.

资料: 388

进入主页

人气:

10000+的老师在这里下载备课资料