江苏省泰州市中考数学试卷一、选择题(本大题共有6小题,每小题3分,共18分,在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣1的相反数是( )A.±1B.﹣1C.0D.12.(3分)如图图形中的轴对称图形是( )A.B.C.D.3.(3分)方程2x2+6x﹣1=0的两根为x1、x2,则x1+x2等于( )A.﹣6B.6C.﹣3D.34.(3分)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( )A.20B.300C.500D.8005.(3分)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是( )
A.点DB.点EC.点FD.点G6.(3分)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为( )A.﹣1B.1C.2D.3二、填空题(本大题共有10小题,每小题3分,共30分,请把答直接填写在答题卡相应位置上)7.(3分)计算:(π﹣1)0= .8.(3分)若分式12x-1有意义,则x的取值范围是 .9.(3分)2019年5月28日,我国“科学”号远洋科考船在最深约为11000m的马里亚纳海沟南侧发现了近10片珊瑚林.将11000用科学记数法表示为 .10.(3分)不等式组x<1x<-3的解集为 .11.(3分)八边形的内角和为 °.12.(3分)命题“三角形的三个内角中至少有两个锐角”是 (填“真命题”或“假命题”).13.(3分)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为 万元.14.(3分)若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是 .15.(3分)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图
形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为 cm.16.(3分)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为 .三、解答题(本大题共有10题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:(8-12)×6;(2)解方程:2x-5x-2+3=3x-3x-2.18.(8分)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,2017年、2018年7~12月全国338个地级及以上城市PM2.5平均浓度统计表(单位:μg/m3)月份年份7891011122017年2724303851652018年232425364953(1)2018年7~12月PM2.5平均浓度的中位数为 μg/m3;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 ;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由.
19.(8分)小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中B、D两个项目的概率.20.(8分)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.21.(10分)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.求:(1)观众区的水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,结果精确到0.1m)22.(10分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.
23.(10分)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?24.(10分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.25.(12分)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.
26.(14分)已知一次函数y1=kx+n(n<0)和反比例函数y2=mx(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=nx(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交与点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.
2019年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分,在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣1的相反数是( )A.±1B.﹣1C.0D.1【解答】解:﹣1的相反数是:1.故选:D.2.(3分)如图图形中的轴对称图形是( )A.B.C.D.【解答】解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.3.(3分)方程2x2+6x﹣1=0的两根为x1、x2,则x1+x2等于( )A.﹣6B.6C.﹣3D.3【解答】解:由于△>0,∴x1+x2=﹣3,故选:C.4.(3分)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:
抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( )A.20B.300C.500D.800【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:C.5.(3分)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是( )A.点DB.点EC.点FD.点G【解答】解:根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.6.(3分)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为( )A.﹣1B.1C.2D.3【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.二、填空题(本大题共有10小题,每小题3分,共30分,请把答直接填写在答题卡相应
位置上)7.(3分)计算:(π﹣1)0= 1 .【解答】解:原式=1,故答案为:18.(3分)若分式12x-1有意义,则x的取值范围是 x≠12 .【解答】解:根据题意得,2x﹣1≠0,解得x≠12.故答案为:x≠12.9.(3分)2019年5月28日,我国“科学”号远洋科考船在最深约为11000m的马里亚纳海沟南侧发现了近10片珊瑚林.将11000用科学记数法表示为 1.1×104 .【解答】解:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.10.(3分)不等式组x<1x<-3的解集为 x<﹣3. .【解答】解:等式组x<1x<-3的解集为x<﹣3,故答案为:x<﹣3.11.(3分)八边形的内角和为 1080 °.【解答】解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.12.(3分)命题“三角形的三个内角中至少有两个锐角”是 真命题 (填“真命题”或“假命题”).【解答】解:三角形的三个内角中至少有两个锐角,是真命题;故答案为:真命题13.(3分)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为 5000 万元.
【解答】解:该商场全年的营业额为1000÷(1﹣25%﹣35%﹣20%)=5000万元,答:该商场全年的营业额为5000万元,故答案为:5000.14.(3分)若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是 m<1 .【解答】解:根据题意得△=22﹣4m>0,解得m<1.故答案为m<1.15.(3分)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为 6π cm.【解答】解:该莱洛三角形的周长=3×60×π×6180=6π(cm).故答案为6π.16.(3分)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为 y=30x .【解答】解:连接PO并延长交⊙O于D,连接BD,则∠C=∠D,∠PBD=90°,
∵PA⊥BC,∴∠PAC=90°,∴∠PAC=∠PBD,∴△PAC∽△PBD,∴PBPA=PDPB,∵⊙O的半径为5,AP=3,PB=x,PC=y,∴x3=10y,∴y=30x,故答案为:y=30x.三、解答题(本大题共有10题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:(8-12)×6;(2)解方程:2x-5x-2+3=3x-3x-2.【解答】解:(1)原式=8×6-12×6=43-3=33;(2)去分母得2x﹣5+3(x﹣2)=3x﹣3,解得x=4,检验:当x=4时,x﹣2≠0,x=4为原方程的解.所以原方程的解为x=4.18.(8分)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,
2017年、2018年7~12月全国338个地级及以上城市PM2.5平均浓度统计表(单位:μg/m3)月份年份7891011122017年2724303851652018年232425364953(1)2018年7~12月PM2.5平均浓度的中位数为 612 μg/m3;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 折线统计图 ;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由.【解答】解:(1)2018年7~12月PM2.5平均浓度的中位数为25+362=612μg/m3;故答案为:612;(2)可以直观地反映出数据变化的趋势的统计图是折线统计图,故答案为:折线统计图;(3)2018年7~12月与2017年同期相比PM2.5平均浓度下降了.19.(8分)小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中B、D两个项目的概率.【解答】解:画树状图如下由树状图知共有6种等可能结果,其中小明恰好抽中B、D两个项目的只有1种情况,所以小明恰好抽中B、D两个项目的概率为16.20.(8分)如图,△ABC中,∠C=90°,AC=4,BC=8.
(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.21.(10分)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.求:(1)观众区的水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,结果精确到0.1m)
【解答】解:(1)∵观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,∴AB=2BC=20(m),答:观众区的水平宽度AB为20m;(2)作CM⊥EF于M,DN⊥EF于N,则四边形MFBC、MCDN为矩形,∴MF=BC=10,MN=CD=4,DN=MC=BF=23,在Rt△END中,tan∠EDN=ENDN,则EN=DN•tan∠EDN≈7.59,∴EF=EN+MN+MF=7.59+4+10≈21.6(m),答:顶棚的E处离地面的高度EF约为21.6m.22.(10分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.
【解答】解:(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,(a≠0).把A(1,0)代入,得0=a(1﹣4)2﹣3,解得a=13.故该二次函数解析式为y=13(x﹣4)2﹣3;(2)令x=0,则y=13(0﹣4)2﹣3=73.则OC=73.因为二次函数图象的顶点坐标为(4,﹣3),A(1,0),则点B与点A关系直线x=4对称,所以B(7,0).所以OB=7.所以tan∠ABC=OCOB=737=13,即tan∠ABC=13.23.(10分)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?
【解答】解:(1)设线段AB所在直线的函数表达式为y=kx+b,根据题意得100k+b=5300k+b=3,解得k=-0.01b=6,∴线段AB所在直线的函数表达式为y=﹣0.01x+6(100≤x≤300);(2)设小李共批发水果m吨,则单价为﹣0.01m+6,根据题意得:﹣0.01m+6=800m,解得m=200或400,经检验,x=200,x=400(不合题意,舍去)都是原方程的根.答:小李用800元一次可以批发这种水果的质量是200千克.24.(10分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.【解答】解:(1)DE与⊙O相切,理由:连接OD,∵AC为⊙O的直径,∴∠ADC=90°,∵D为AC的中点,∴AD=CD,
∴AD=CD,∴∠ACD=45°,∵OA是AC的中点,∴∠ODC=45°,∵DE∥AC,∴∠CDE=∠DCA=45°,∴∠ODE=90°,∴DE与⊙O相切;(2)∵⊙O的半径为5,∴AC=10,∴AD=CD=52,∵AC为⊙O的直径,∴∠ABC=90°,∵AB=8,∴BC=6,∵∠BAD=∠DCE,∵∠ABD=∠CDE=45°,∴△ABD∽△CDE,∴ABCD=ADCE,∴852=52CE,∴CE=254.25.(12分)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).
(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.【解答】解:(1)证明:∵四边形APCD正方形,∴DP平分∠APC,PC=PA,∴∠APD=∠CPD=45°,∴△AEP≌△CEP(AAS);(2)CF⊥AB,理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP,∵∠EAP=∠BAP,∴∠BAP=∠FCP,∵∠FCP+∠CMP=90°,∠AMF=∠CMP,∴∠AMF+∠PAB=90°,∴∠AFM=90°,∴CF⊥AB;(3)过点C作CN⊥PB.∵CF⊥AB,BG⊥AB,
∴FC∥BN,∴∠CPN=∠PCF=∠EAP=∠PAB,又AP=CP,∴△PCN≌△APB(AAS),∴CN=PB=BF,PN=AB,∵△AEP≌△CEP,∴AE=CE,∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2AB=16.26.(14分)已知一次函数y1=kx+n(n<0)和反比例函数y2=mx(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=nx(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交与点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.
【解答】解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=2+n﹣m,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC,即:2+n﹣m=m﹣n,或m﹣(2+n)=2即:m﹣n=1或4;②点E的横坐标为:m-nk,d=BC+BE=m﹣n+(1-m-nk)=1+(m﹣n)(1-1k),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1-1k=0时,此时k=1,从而d=1.