正数和负数(1)(3)
加入VIP免费下载

正数和负数(1)(3)

ID:1183525

大小:1.21 MB

页数:55页

时间:2022-07-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
§2.1正数和负数(1)教学目标1.使学生了解正数与负数是从实际需要中产生的;2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3.初步会用正负数表示具有相反意义的量;4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.教学重点和难点重点难点负数的意义.负数的意义.教学方法启发式教学教学过程(一)、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.(二)、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有” ,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.三、运用举例 变式练习例 所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:-18,,3.1416,0,2001,,-0.142857,95℅.正数集负数集此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.课堂练习任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{             …},负数集合:{             …}.(四)、小结由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.练习设计1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3.在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.1.4.如果-50元表示支出50元,那么+200元表示什么?5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7.一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?板书设计2.1正数和负数(1)(一)知识回顾(四)例题解析(六)课堂小结(二)观察发现例(三)解方程(五)课堂练习练习设计教学后记 §2.1正数和负数(2)教学目标1.使学生理解有理数的意义,并能将给出的有理数进行分类;2.培养学生树立分类讨论的思想.教学重点和难点重点难点有理数包括哪些数.有理数的分类及其分类的标准.教学方法启发式教学教学过程(一)、从学生原有的认知结构提出问题1.什么是正、负数?2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.3.任何一个正数都比0大吗?任何一个负数都比0小吗?4.什么是整数?什么是分数?根据学生的回答引出新课.(二)、讲授新课1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即2.给出有理数概念整数和分数统称为有理数,即有理数有理数是英语“Rationalnumber”的译名,更确切的译名应译作“比3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充. 教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即有理数或有理数并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.(三)、运用举例 变式练习例1 将下列数按上述两种标准分类:1,-0.10,-79,325,0,-20,10.10,1000.1.例2 下列各数是正数还是负数,是整数还是分数:1,-0.10,-79,325,0,-20,10.10,1000.1.课堂练习P20练习1.2.3.(四)、小结教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?板书设计2.1正数和负数(2)(一)知识回顾(三)例题解析(五)课堂小结(二)观察发现例1、例2(四)课堂练习练习设计教学后记 §2.2数轴(1)教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点难点初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.正确理解有理数与数轴上点的对应关系.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.(二)、讲授新课让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.三、运用举例 变式练习例1画出数轴,并在数轴上画出表示下列各数的点: 4,-2,-4.5,,0.解如图所示例1指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习画出数轴,并在数轴上画出表示下列各数的点:-1.8,0,-3.5,,再按数轴上从左到右的顺序,将这些数重新排成一行.最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.(四)、小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.练习设计1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};板书设计2.2数轴(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计教学后记 §2.2数轴(2)教学目标1.使学生进一步掌握数轴概念;2.使学生会利用数轴比较有理数的大小;3.使学生进一步理解数形结合的思想方法.教学重点和难点重点:会比较有理数的大小.难点:如何比较两个负数(尤其是两个负分数)的大小.教学方法启发式教学教学过程(一)、从学生原有的认识结构提出问题1.数轴怎么画?它包括哪几个要素?2.大于0的数在数轴上位于原点的哪一侧?小于0的数呢?(二)、师生共同探索利用数轴比较有理数大小的法则在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边,5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃.下面的结论引导学生把温度计与数轴类比,自己归纳出来:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数大于负数.(三)、运用举例 变式练习通过此例引导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“<”连接两个以上数时,小数在前,大数在后,不能出现5>0<4这样的式子.例2将有理数3,0,,-4按从小到大顺序排列,用“<”号连接起来.解正数<3,由正、负数大小比较法则,得-4<0<<3.例3比较下列各数的大小:-1.3,0.3,-3,-5.解将这些数分别在数轴上表示出来(图2-2-4):图2-2-4所以-5<-3<-1.3<0.3例4观察数轴,找出符合下列要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数; (3)最大的整数和最小的整数;(4)最小的正分数和最大的负分数.在解本题时应适时提醒学生,直线是向两边无限延伸的.课堂练习P25练习1,22.在数轴上画出表示下列各数的点,并用“<”把它们连接起来:-2.1,-3,0.5,;(四)、小结教师指出这节课主要内容是利用数轴比较两个有理数的大小,进而要求学生叙述比较的法则.练习设计1.比较下列每对数的大小:2.把下列各组数从小到大用“<”号连接起来:(1)3,-5,-4;                (2)-9,16,-11;3.下表是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.板书设计2.2数轴(2)在数轴上表示的两个数,   例2   例3、 例4 右边的数总比左边的数大.  正数都大于零,负数都小于零,正数大于负数.教学后记 §2.3相反数教学目标1、了解互为相反数的几何定义2、给一个数,能求出它的相反数教学重点和难点正确理解互为相反数的概念教学方法启发式教学教学过程观察以下两对数中,各有什么共同特点?-6和6,1.5和-1,5.很明显,每对数中的两个数都只有符号不同.图2-3-1想一想在数轴上,表示每对数的点有什么相同?有什么不同?在数轴上(图2-3-1),-6和6位于原点两旁,且与原点的距离相等,也就是说,它们对于原点的位置只有方向不同。1.5和-1.5也是这样.概括象这样只有符号不同的两个数称互为相反数(oppositenumber).如和-互为相反数.即是-的相反数.-是的相反数.在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等.我们还规定:0的相反数是0.是否还有相反数等于本身的数?例1分别写出下列各数的相反数:5,-7,-,+11.2.解:5的相反数是-5.-7的相反数是7.-的相反数是. +11.2的相反数是-11.2.我们通常把在一个数前面添上“-”号,表示这个数的相反数.例如-(-4)=4,-(+5.5)=-5.5,-0=0.同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12,+0=0.例2化简下列各数:(1)-(+10);(2)+(-0.15);(3)+(+3);(4)-(-20).解(1)-(+10)=-10.(2)+(-0.15)=-0.15.(3)+(+3)=+3=3.(4)-(-20)=20.练习:P28作业:P28习题2.31,2,3,4板书设计2.3相反数0的相反数是0例1、例2课堂练习练习设计教学后记 §2.4绝对值教学目标1、使学生掌握有理数的绝对值概念及表示方法;2、使学生熟练掌握有理数绝对值的求法和有关的简单计算;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的概括能力教学重点和难点正确理解绝对值的概念教学方法启发式教学教学过程(一)、从学生原有的认知结构提出问题1、下列各数中:+7,-2,,-83,0,+001,-,1,哪些是正数?哪些是负数?哪些是非负数?2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:-3,4,0,3,-15,-4,,23、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?4、怎样表示一个数的相反数?(二)、师生共同研究形成绝对值概念例1两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米这样,利用有理数就可以明确表示每辆汽车在公路上的位置了我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离)这里的5叫做+5的绝对值,4叫做-4的绝对值例2两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是101米,乙侧得的结果是098米甲测量的差额即多出的数记作+001米,乙测量的差额即减少的数记作-002米如果不计测量结果是多出或减少,只考虑测量误差,那么他们测量的误差分别是001和002这里所说的测量误差也就是测量结果所多出来或减少了的数+001和-002和7-002的绝对值如果请有经验的老师傅进行测量,结果恰好是1米,我们用有理数来表示测量的误差,这个数就是0(也可以记作+0或-0),自然这个差额0的绝以值是0现在我们撇开例题的实际意义来研究有理数的绝对值,那么,有+5的绝对值是5,在数轴上表示+5的点到原点的距离是5;-4的绝对值是4,在数轴上表示-4的点到原点的距离是4;+001的绝对值是001,在数轴上表示+001的点到原点的距离是001;-002的绝对值是002,在数轴上表示-002的点它到原点的距离是002;0的绝对值是0,表明它到原点的距离是0一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离为了方便,我们用一种符号来表示一个数的绝对值约定在一个数的两旁各画一条竖线来表示这个数的绝对值如 +5的绝对值记作+5,显然有+5=5;-002的绝对值记作-002,显然有-002=002;0的绝对值记作0,也就是0=0a的绝对值记作a,(提醒学生a可以是正数,也可以是负数或0)例3利用数轴求5,32,7,-2,-71,-05的绝对值由例3学生自己归纳出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0这也是绝对值的代数定义把绝对值的代数定义用数学符号语言如何表达?把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步1、用a表示一个数,如何表示a是正数,a是负数,a是0?由有理数大小比较可以知道:a是正数:a>0;a是负数:a<0;a是0:a=02、怎样表示a的本身,a的相反数?a的本身是自然数还是a.a的相反数为-a.现在可以把绝对值的代数定义表示成如果a>0,那么=a;如果a<0,那么=-a;如果a=0,那么=0由绝对值的代数定义,我们可以很方便地求已知数的绝对值了例4求8,-8,,-,0,6,-π,π-5的绝对值(三)、课堂练习1、下列哪些数是正数?-2,,,,-,-(-2),-2、在括号里填写适当的数:=();=();-=();-=();=1,=0;-=-23、计算下列各题:|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|-|×|-|;|-|÷|-2|;÷|-|。(四)、小结指导学生阅读教材,进一步理解绝对值的代数和几何意义练习设计 1、填空:(1)+3的符号是_____,绝对值是______;(2)-3的符号是_____,绝对值是______;(3)-的符号是____,绝对值是______;(4)10-5的符号是_____,绝对值是______2、填空:(1)符号是+号,绝对值是7的数是________;(2)符号是-号,绝对值是7的数是________; (3)符号是-号,绝对值是035的数是________; (4)符号是+号,绝对值是1的数是________;3、(1)绝对值是的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)有没有绝对值是-2的数?4、计算:(1)|-15|-|-6|;(2)|-024|+|-506|;(3)|-3|×|-2|;(4)|+4|×|-5|;(3)|-12|÷|+2|;(6)|20|÷|-|5、填空:(1)当a>0时,|2a|=________;(2)当a>1时,|a-1|=________;(3)当a<1时,|a-1|=________板书设计2.4绝对值如果a>0,那么=a;如果a<0,那么=-a;如果a=0,那么=0例1      例2     例3    例4 、课堂练习 练习设计教学后记        §2.5有理数的大小比较教学目标1、使学生进一步掌握绝对值概念;2、使学生掌握利用绝对值比较两个负数的大小;3、注意培养学生的推时论证能力教学重点和难点负数大小比较教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1、计算:|+15|;|-|;|0|2、计算:|-|;|--|.3、比较-(-5)和-|-5|,+(-5)和+|-5|的大小4、哪个数的绝对值等于0?等于?等于-1?5、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个?6、a,b所表示的数如图所示,求|a|,|b|,|a+b|,|b-a|7、若|a|+|b-1|=0,求a,b这一组题从不同角度提出问题,以使学生进一步掌握绝对值概念解:1、|+15|=15,|-|=,|0|=0让学生口答这样做的依据2、|-|=||=|,|--=-(--)。说明:“||”有两重作用,即绝对值和括号3、因为-(-5)=5,-|-5|=-5,5>-5,所以-(-5)>-|-5|。这里需讲清一个问题,即-(-5)和-|-5|的读法,让学生熟悉,-(-5)读作-5的相反数,-|-5|读作-5绝对值的相反数因为+(-5)=-5,+|-5|=,-5<5,所以+(-5)<+|-5|4、0的绝对值等于0,±的绝对值等于,没有什么数的绝对值等于-1(为什么?)用符号语言表示应为:|0|=0,|+|=|,|-|=。这里应再次强调绝对值是数轴上的点与原点的距离,并指出距离是非负量5、绝对值小于 3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2用符号语言表示应为:因为|x|<3,所以-3<x<3如果x是整数,那么x=-2,-1,0,1,26、由数轴上a、b的位置可以知道a<0,b>0,且|a|<|b|所以|a|=-a,|b|=b,|a+b|=a+b,|b-a|=b-a7、若a+b=0,则a,b互为相反数或a,b都是0,因为绝对值非负,所以只有|a|=0,|b-1|=0,由绝对值意义得a=0,b-1=0用符号语言表示应为:因为|a|+|b-1|=0,所以a=0,b-1=0,所以a=0,b=1(二)、师生共同探索利用绝对值比较负数大小的法则利用数轴我们已经会比较有理数的大小由上面数轴,我们可以知道c<b<a,其中b,c都是负数,它们的绝对值哪个大?显然>引导学生得出结论:两个负数,绝对值大的反而小这样以后在比较负数大小时就不必每次再画数轴了(三)、运用举例变式练习例1比较-4与-|—3|的大小例2已知a>b>0,比较a,-a,b,-b的大小例3比较-与-的大小课堂练习1、比较下列每对数的大小:与;|2|与;-与;与2、比较下列每对数的大小:-与-;-与-;-与-;-与-(四)、小结先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了练习设计1、判断下列各式是否正确:(1)|-01|<|-001|;(2)|-|<;(3)<;(4)>-2、比较下列每对数的大小: (1)-与-;(2)-与-0273;(3)-与-;(4)-与-;(5)-与-;(6)-与-3、写出绝对值大于3而小于8的所有整数4、你能说出符合下列条件的字母表示什么数吗?(1)|a|=a;(2)|a|=-a;(3)=-1;(4)a>-a;(5)|a|≥a;(6)-y>0;(7)-a<0;(8)a+b=05若|a+1|+|b-a|=0,求a,b板书设计2.5有理数的大小比较两个负数,绝对值大的反而小例1    例2    例3    课堂练习 练习设计教学后记 §2.6有理数的加法(1)教学目标1.使学生掌握有理数加法法则,并能运用法则进行计算;2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.教学重点和难点重点:有理数加法法则.难点:异号两数相加的法则.教学方法启发式教学教学过程(一)、师生共同研究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5.                                                                  ①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.                                                                     ②现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;                                                                   ③上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;                                                                    ④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;                                                                       ⑤上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.                                                                              ⑥上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.(二)、应用举例 变式练习例1 计算下列算式的结果,并说明理由:(1)(+4)+(+7);    (2)(-4)+(-7);      (3)(+4)+(-7);      (4)(+9)+(-4);(5)(+4)+(-4);     (6)(+9)+(-2);      (7)(-9)+(+2);      (8)(-9)+0;(9)0+(+2);        (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.解:(1) (-3)+(-9)            (两个加数同号,用加法法则的第2条计算)=-(3+9)                 (和取负号,把绝对值相加)=-12.下面请同学们计算下列各题:(1)(-0.9)+(+1.5);   (2)(+2.7)+(-3);  (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评.(三)、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.练习设计1.计算:(1)(-10)+(+6);     (2)(+12)+(-4);    (3)(-5)+(-7);    (4)(+6)+(+9);(5)67+(-73);        (6)(-84)+(-59);   (7)33+48;        (8)(-56)+37.2.计算:(1)(-0.9)+(-2.7);          (2)3.8+(-8.4);               (3)(-0.5)+3;(4)3.29+1.78;              (5)7+(-3.04);                 (6)(-2.9)+(-0.31);(7)(-9.18)+6.18;          (8)4.23+(-6.77);           (9)(-0.78)+0.4*.用“>”或“<”号填空:(1)如果a>0,b>0,那么a+b______0;(2)如果a<0,b<0,那么a+b______0;(3)如果a>0,b<0,|a|>|b|,那么a+b______0;(4)如果a<0,b>0,|a|>|b|,那么a+b______0.5*.分别根据下列条件,利用|a|与|b|表示a与b的和:(1)a>0,b>0;                             (2)a<0,b<0;(3)a>0,b<0,|a|>|b|;                (4)a>0,b<0,|a|<|b|.板书设计2.6有理数的加法(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计教学后记      §2.6有理数的加法(2)教学目标1.使学生掌握有理数加法的运算律,并能运用加法运算律简化运算;2.培养学生观察、比较、归纳及运算能力.教学重点和难点1.重点:有理数加法运算律.2.难点:灵活运用运算律使运算简便.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.叙述有理数的加法法则.2.“有理数加法”与小学里学过的数的加法有什么区别和联系?答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算.3.计算下列各题,并说明是根据哪一条运算法则?(1)(-9.18)+6.18;              (2)6.18+(-9.18);     (3)(-2.37)+(-4.63);4.计算下列各题:(1)[8+(-5)]+(-4); (2)8+[(-5)+(-4)]; (3)[(-7)+(-10)]+(-11);(4)(-7)+[(-10)+(-11)]; (5)[(-22)+(-27)]+(+27);(6)(-22)+[(-27)+(+27)].(二)、师生共同研究形成有理数运算律通过上面练习,引导学生得出:交换律——两个有理数相加,交换加数的位置,和不变.用代数式表示上面一段话:a+b=b+a.运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数. 结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用代数式表示上面一段话:(a+b)+c=a+(b+c).这里a,b,c表示任意三个有理数.(三)、运用举例 变式练习根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.例1 计算16+(-25)+24+(-32).引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便.解:16+(-25)+24+(-32)=16+24+(-25)+(-32)               (加法交换律)=[16+24]+[(-25)+(-32)]          (加法结合律)=40+(-57)                              (同号相加法则)=-17.                                   (异号相加法则)例2计算:(1)(+26)+(-18)+5+(-16)(2)解(1)(+26)+(-18)+5+(-16)=(26+5)+[(-18)+(-16)]=31+(-34)=-(34-31)=-3.(2)======本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0) ,同号结合或凑整数.例3、10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5.求这10筐苹果的总重量.解2+(-4)+2.5+3+(-0.5)+1.5+3+(-1)+0+(-2.5)=(2+3+3)+(-4)+[2.5+(-2.5)]+[(-0.5)+(-1)+1.5]=8+(-4)=4.30×10+4=304.答:10筐苹果总重量是304千克.课堂练习1.计算:(要求注理由)(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);(3)(-7)+(-6.5)+(-3)+6.5.2.计算:(要求注理由)练习设计1.计算:(要求注理由)(1)(-8)+10+2+(-1); (2)5+(-6)+3+9+(-4)+(-7);(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;2.计算(要求注理由)(1)(-17)+59+(-37);                              (2)(-18.65)+(-6.15)+18.15+6.15;3.当a=-11,b=8,c=-14时,求下列代数式的值:(1)a+b;                       (2)a+c;(3)a+a+a;                    (4)a+b+c.利用有理数的加法解下列各题(第4~8题):4.飞机的飞行高度是1000米,上升300米,又下降500米,这时飞行高度是多少?5.存折中有450元,取出80元,又存入150元以后,存折中还有多少钱?6.一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少?7.小吃店一周中每天的盈亏情况如下(盈余为正):128.3元,-25.6元,-15元,27元,-7元,36.5元,98元一周总的盈亏情况如何?8.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.58筐白菜的重量是多少?板书设计2.6有理数的加法(2)(一)知识回顾(三)例题解析(五)课堂小结例1、例2、例3(二)观察发现(四)课堂练习练习设计教学后记 §2.7有理数的减法教学目标1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;2.培养学生观察、分析、归纳及运算能力.教学重点和难点有理数减法法则教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.计算:(1)(-2.6)+(-3.1); (2)(-2)+3; (3)8+(-3); (4)(-6.9)+0.2.化简下列各式符号:(1)-(-6);            (2)-(+8);          (3)+(-7);(4)+(+4);          (5)-(-9);           (6)-(+3).3.填空:(1)______+6=20;               (2)20+______=17;(3)______+(-2)=-20;          (4)(-20)+______=-6.在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.(二)、师生共同研究有理数减法法则问题1 (1)(+10)-(+3)=______;(2)(+10)+(-3)=______.教师引导学生发现:两式的结果相同,即(+10)-(+3)=(+10)+(-3). 教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2 (1)(+10)-(-3)=______;(2)(+10)+(+3)=______.对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).至此,教师引导学生归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.(三)、运用举例 变式练习例1 计算:(1)(-3)-(-5); (2)0-7.例2 计算:(1)18-(-3); (2)(-3)-18; (3)(-18)-(-3); (4)(-3)-(-18).通过计算上面一组有理数减法算式,引导学生发现:在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.例3 计算:(1)(-3)-[6-(-2)]; (2)15-(6-9).例4 15℃比5℃高多少?15℃比-5℃高多少?课堂练习1.计算(口答):(1)6-9;            (2)(+4)-(-7);        (3)(-5)-(-8);(4)(-4)-9;        (5)0-(-5);             (6)0-5.2.计算:(1)15-21;               (2)(-17)-(-12);      (3)(-2.5)-5.9;(四)、小结1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.练习设计1.计算:(1)-8-8;          (2)(-8)-(-8);         (3)8-(-8);         (4)8-8;(5)0-6;            (6)6-0;                 (7)0-(-6);         (8)(-6)-0.2.计算:(1)16-47;          (2)28-(-74);       (3)(-37)-(-85);          (4)(-54)-14;(5)123-190;       (6)(-112)-98;      (7)(-131)-(-129);      (8)341-249. 3.计算:(1)1.6-(-2.5);    (2)0.4-1;            (3)(-3.8)-7;              (4)(-5.9)-(-6.1);(5)(-2.3)-3.6;    (6)4.2-5.7;         (7)(-3.71)-(-1.45);    (8)6.18-(-2.93).5.计算:(1)(3-10)-2;          (2)3-(10-2);                       (3)(2-7)-(3-9);6.当a=11,b=-5,c=-3时,求下列代数式的值:(1)a-c;                  (2)b-c;(3)a-b-c;               (4)c-a-b.利用有理数减法解下列问题(第7~9题):7.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?8.分别求出数轴上两点间的距离:(1)表示数6的点与表示数2的点;(2)表示数5的点与表示数0的点;(3)表示数2的点与表示数-5的点;(4)表示数-1的点与表示数-6的点.9.某地一周内每天的最高气温与最低气温如下表,哪天的温差最大?哪天的温差最小?10*.填空:(1)如果a-b=c,那么a=______;(2)如果a+b=c,那么a=______;(3)如果a+(-b)=c,那么a=______;(4)如果a-(-b)=c,那么a=______.11*.用“>”或“<”号填空:(1)如果a>0,b<0,那么a-b______0;(2)如果a<0,b>0,那么a-b______0;(3)如果a<0,b<0,|a|>|b|,那么a-b______0;(4)如果a<0,b<0,那么a-(-b)______0.12*.解下列方程:(1)x+8=5;                 (2)x-(-7)=-3;(3)x-11=-4;               (4)6+x=-10.13*.把下面加减法混合运算的式子改成只含加法的式子:(1)-30-15+13-(-7); (2)-7-4+(-9)-(-5).板书设计2.7有理数的减法(一)知识回顾(三)例题解析(五)课堂小结例1、例2、例3(二)观察发现(四)课堂练习练习设计教学后记 §2.8有理数的加减混合运算(1)教学目标1.使学生理解有理数的加减法可以互相转化,并了解代数和概念;2.使学生熟练地进行有理数的加减混合运算;3.培养学生的运算能力.教学重点和难点重点:准确迅速地进行有理数的加减混合运算.难点:减法直接转化为加法及混合运算的准确性.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.叙述有理数加法法则.2.叙述有理数减法法则.3.叙述加法的运算律.4.符号“+”和“-”各表达哪些意义?5.化简:+(+3);+(-3);-(+3);-(-3).6.口算:(1)2-7;              (2)(-2)-7;     (3)(-2)-(-7);       (4)2+(-7);(5)(-2)+(-7);     (6)7-2;         (7)(-2)+7;           (8)2-(-7).(二)、讲授新课1.加减法统一成加法算式以上口算题中(1),(2),(3),(6),(8)都是减法,按减法法则可写成加上它们的相反数.同样,(-11)-7+(-9)-(-6)按减法法则应为(-11)+(-7)+(-9)+(+6),这样便把加减法统一成加法算式.几个正数或负数的和称为代数和.再看16-(-2)+(-4)-(-6)-7写成代数和是16+2+(-4)+6+(-7).既然都可以写成代数和,加号可以省略,每个括号都可以省略,如:(-11)-7+(-9)-(-6)=-11-7-9+6,读作“负11,负7,负9,正6的和”,运算上可读作“负11减7减9加6”;16+2+(-4)+6+(-7)=16+2-4+6-7,读作“正16,正2,负4,正6,负7的和”,运算上读作“16加2减4加6减7”.例1 把(-20)+(+3)-(+5)-(-7)写成省略括号的和的形式,并把它读出来.课堂练习(1)把下面各式写成省略括号的和的形式:①10+(+4)+(-6)-(-5); ②(-8)-(+4)+(-7)-(+9).(2)说出式子8-7+4-6两种读法.2.加法运算律的运用既然是代数和,当然可以运用有理数加法运算律:a+b=b+a,(a+b)+c=a+(b+c).例2 计算-20+3-5+7.解:-20+3-5+7=-20-5+3+7=-25+10=-15.注意这里既交换又结合,交换时应连同数字前的符号一起交换.课堂练习(1)计算:①-1+2-3-4+5; ②(-8)-(+4)+(-6)-(-1).(2)用较为简便的方法计算下列各题:(三)、小结1.有理数的加减法可统一成加法.2.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.练习设计1.计算:(1)3-8;        (2)-4+7;       (3)-6-9;         (4)8-12;(5)-15+7;    (6)0-2;         (7)-5-9+3;      (8)10-17+8;(9)-3-4+19-11;                                          (10)-8+12-16-23.2.计算: (1)-4.2+5.7-8.4+10;  (2)6.1-3.7-4.9+1.8;3.计算:(1)-216-157+348+512-678; (2)81.26-293.8+8.74+111;4.计算:(1)12-(-18)+(-7)-15;                  (2)-40-28-(-19)+(-24)-(-32);5.计算:(1)(+12)-(-18)+(-7)-(+15);(2)(-40)-(+28)-(-19)+(-24)-(32);(3)(+4.7)-(-8.9)-(+7.5)+(-6);板书设计2.6有理数的加减混合运算(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计教学后记§2.8有理数的加减混合运算(2)教学目标让学生熟练地进行有理数加减混合运算,并利用运算律简化运算.教学重点和难点重点:加减运算法则和加法运算律.难点:省略加号与括号的代数和的计算.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题什么叫代数和?说出-6+9-8-7+3两种读法.(二)、讲授新课1.计算下列各题:2.计算: (1)-12+11-8+39; (2)+45-9-91+5; (3)-5-5-3-3;(7)-6-8-2+3.54-4.72+16.46-5.28;3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:(1)a-(b+c);        (2)a-b-c;      (3)a-(b+c+d);         (4)a-b-c-d;(5)a-(b-d);        (6)a-b+d;     (7)(a+b)-(c+d);      (8)a+b-c-d;(9)(a-c)-(b-d);                         (10)a-c-b+d.请同学们观察一下计算结果,可以发现什么规律?a-(b+c)=a-b-c;a-(b+c+d)=a-b-c-d;a-(b-d)=a-b+d;(a+b)-(c+d)=a+b-c-d;(a-c)-(b-d)=a-c-b+d.括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变.4.用较简便方法计算:(4)-16+25+16-15+4-10.(三)、课堂练习1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:(1)两个数相加,和一定大于任一个加数.                                  (   )(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数. (   )(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号.    (   )(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和. (   )(5)两数差一定小于被减数.                                               (   )(6)零减去一个数,仍得这个数.                                           (   )(7)两个相反数相减得0.                                                    (   )(8)两个数和是正数,那么这两个数一定是正数.                        (   )2.填空题:(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______. (2)若a<0,那么a和它的相反数的差的绝对值是______.(3)若|a|+|b|=|a+b|,那么a,b的关系是______.(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.(5)-[-(-3)]=______,-[-(+3)]=______.这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化.练习设计1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:(1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c.2.分别根据下列条件求代数式x-y-z+w的值:(1)x=-3,y=-2,z=0,w=5;(2)x=0.3,y=-0.7,z=1.1,w=-2.1;3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:(1)a=-1; (2)a=-2; (3)a=-3; (4)a=-0.5.4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例.(1)若a,b同号,则a+b=|a|+|b|.                                                (   )(2)若a,b异号,则a+b=|a|-|b|.                                                (   )(3)若a<0、b<0,则a+b=-(|a|+|b|).                                           (   )(4)若a,b异号,则|a-b|=|a|+|b|.                                              (   )(5)若a+b=0,则|a|=|b|.                                                         (   )板书设计§2.8有理数的加减混合运算(2)(一)知识回顾(三)例题解析(五)课堂小结例4、例5(二)观察发现(四)课堂练习练习设计教学后记 §2.9有理数的乘法(1)教学目标1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;2.培养学生观察、归纳、概括及运算能力.教学重点和难点重点:有理数乘法的运算.难点:有理数乘法中的符号法则.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.计算(-2)+(-2)+(-2).2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)(二)、师生共同研究有理数乘法法则问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?解:3×2=6(厘米).                                                                   ①答:上升了6厘米.问题2 水库的水位平均每小时上升-3厘米,2小时上升多少厘米?解:(-3)×2=-6(厘米).                                                              ②答:上升-6厘米(即下降6厘米).引导学生比较①,②得出:把一个因数换成它的相反数,所得的积是原来的积的相反数.这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2” ,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.此外,(-3)×0=0.综合上面各种情况,引导学生自己归纳出有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.继而教师强调指出:“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.因此,在进行有理数乘法时更需时时强调:先定符号后定值.(三)、运用举例,变式练习例1 计算:(1)(-5)×(-6);(2)解(1)(-5)×(-6)=30;(2)例2 某一物体温度每小时上升a度,现在温度是0度.(1)t小时后温度是多少?(2)当a,t分别是下列各数时的结果:①a=3,t=2;②a=-3,t=2;②a=3,t=-2;④a=-3,t=-2;教师引导学生检验一下(2)中各结果是否合乎实际.课堂练习1.口答:(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9;(4)(-6)×1;(5)(-6)×(-1); (6)6×(-1); (7)(-6)×0; (8)0×(-6);2.口答:(1)1×(-5);        (2)(-1)×(-5);         (3)+(-5);(4)-(-5);            (5)1×a;                 (6)(-1)×a.这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.3.当a,b是下列各数值时,填写空格中计算的积与和: 4.填空:(1)1×(-6)=______;(2)1+(-6)=_______;(3)(-1)×6=________;(4)(-1)+6=______;(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.5.判断下列方程的解是正数还是负数或0:(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.(四)、小结今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.练习设计1.计算:(1)(-16)×15;          (2)(-9)×(-14);       (3)(-36)×(-1);(4)13×(-11);         (5)(-25)×16;         (6)(-10)×(-16).2.计算:(1)2.9×(-0.4);          (2)-30.5×0.2;          (3)0.72×(-1.25);(4)100×(-0.001);        (5)-4.8×(-1.25);      (6)-4.5×(-0.32).3.计算:4.填空(用“>”或“<”号连接):(1)如果a<0,b<0,那么ab________0;(2)如果a<0,b<0,那么ab_______0;(3)如果a>0时,那么a____________2a;(4)如果a<0时,那么a__________2a.板书设计§2.9有理数的乘法(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计教学后记 §2.9有理数的乘法(2)教学目标1.使学生掌握多个有理数相乘的积的符号法则;2.掌握有理数乘法的运算律,并利用运算律简化乘法运算;3.培养学生观察、归纳、概括及运算能力.教学重点和难点重点:乘法的符号法则和乘法的运算律.难点:积的符号的确定.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.叙述有理数乘法法则.2.计算(五分钟训练):(1)(-2)×3; (2)(-2)×(-3); (3)4×(-1.5); (4)(-5)×(-2.4);(5)29×(-21); (6)(-2.5)×16; (7)97×0×(-6);(17)1×2×3×4×(-5); (18)1×2×3×(-4)×(-5);(19)1×2×(-3)×(-4)×(-5); (20)1×(-2)×(-3)×(-4)×(-5);(21)(-1)×(-2)×(-3)×(-4)×(-5).(二)、讲授新课1.几个有理数相乘的积的符号法则引导学生观察上面各题的计算结果,找一找积的符号与什么有关?(17),(19),(21)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.是不是规律?再做几题试试: (1)3×(-5); (2)3×(-5)×(-2); (3)3×(-5)×(-2)×(-4);(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.再看两题:(1)(-2)×(-3)×0×(-4); (2)2×0×(-3)×(-4).结果都是0.引导学生由以上计算归纳出几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.继而教师强调指出,这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.注意:第一个因数是负数时,可省略括号.例2 计算:(1)8+5×(-4); (2)(-3)×(-7)-9×(-6).解:(1) 8+5×(-4)=8+(-20)=-12;                                 (先乘后加)(2) (-3)×(-7)-9×(-6)=21-(-54)=75.                                  (先乘后减)通过例1、例2教师小结:在有理数乘法中,首先要掌握积的符号法则,当符号确定后又归结到小学数学的乘法运算上,四则运算顺序也同小学一样,先进行第二级运算,再进行第一级运算,若有括号先算括号里的式子.课堂练习(1)判断下列积的符号(口答):①(-2)×3×4×(-1); ②(-5)×(-6)×3×(-2);③(-2)×(-2)×(-2); ④(-3)×(-3)×(-3)×(-3).③1+0×(-1)-(-1)×(-1)-(-1)×0×(-1).2.乘法运算律在做练习时我们看到如果像小学一样能利用乘法的交换律和结合计算:(1)5×(-6);(4)(-6)×5;(2)[3×(-4)]×(-5); (3)3×[(-4)×(-5)];(4)5×[3+(-7)]; (5)5×3+5×(-7).教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.(1)乘法交换律文字叙述:两个数相乘,交换因数的位置,积不变.代数式表达:ab=ba.(2)乘法结合律文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变. 代数式表达:(ab)c=a(bc).(3)乘法分配律文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.代数式表达:a(b+c)=ab+ac.提问:这里为什么只说“和”呢?3×(5-7)能不能利用分配律?答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3×(5-7)可以看成3乘以5与-7的和,当然可利用分配律.提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加.继而教师作如下小结:(1)小学学习的乘法运算律都适用于有理数乘法.(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样.掌握了学习的方法,就掌握了自学的钥匙,希望予以注意.课堂练习计算(能简便的尽量简便):(5)(-23)×(-48)×216×0×(-2); (6)(-9)×(-48)+(-9)×48;(7)24×(-17)+24×(-9).(三)、小结教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.练习设计1.计算:(7)(-7.33)×42.07+(-2.07)(-7.33);(8)(-53.02)(-69.3)+(-130.7)(-5.02);板书设计§2.9有理数的乘法(2)(一)知识回顾(三)例题解析(五)课堂小结例4、例5(二)观察发现(四)课堂练习练习设计教学后记 §2.10有理数的除法教学目标1.使学生理解有理数倒数的意义;2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;3.培养学生观察、归纳、概括及运算能力.教学重点和难点重点:有理数除法法则.难点:(1)商的符号的确定.(2)0不能作除数的理解.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.叙述有理数乘法法则.2.叙述有理数乘法的运算律.3.计算:(1)3×(-2); (2)-3×5; (3)(-2)×(-5).(二)、导入新课因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;同样-3×5=-15,解简易方程-3x=-15,得x=5.在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于 -15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.三、讲授新课1.有埋数的倒数0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.)提问:怎样求一个数的倒数?答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分数再求倒数.什么性质所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用.这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义.2.有理数除法法则利用有理数倒数的概念,我们进一步学习有理数除法.因为(-2)×(-4)=8,所以8÷(-4)=-2.由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即除以一个数等于乘以这个数的倒数.0不能作除数.例1 计算:(1);(2);(3)解(1);(2);(3)课堂练习1.写出下列各数的倒数:(1);(2);(3)–5;(4)1;(5)–1;(6)0.22.计算:(1);(2);(3)(4);(5)3.有理数除法的符号法则观察上面的练习,引导学生总结出有理数除法的商的符号法则: 两数相除,同号得正,异号得负.掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数,都得0.例2 化简下列分数:(1)(2)解(1)(2)例3 计算:(1);(2)解(1)(2)(四)、小结1.指导学生看书,重点是除法法则.2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.练习设计习题2.101、2、3、4、5题板书设计§2.10有理数的除法(一)知识回顾(三)例题解析(五)课堂小结例1、例2、例3(二)观察发现(四)课堂练习练习设计教学后记 §2.11有理数的乘方(1)教学目标1.理解有理数乘方的概念,掌握有理数乘方的运算;2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3.渗透分类讨论思想.教学重点和难点重点:有理数乘方的运算.难点:有理数乘方运算的符号法则.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a呢?一般地,我们有:n个相同的因数a相乘,即a·a·…·a,记作n个a(n是正整数)在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明.(二)、讲授新课 例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4.这种求几个相同因数的积的运算,叫做乘方(involution),乘方的结果叫做幂(power).在中,a叫作底数,n叫做指数,读作a的n次方,看作是a的n次方的结果时,也可读作a的n次幂.例如,中,底数是2,指数是3,读作2的3次方,或2的3次幂.一个数可以看作这个数本身的一次方,例如8就是,通常指数为1时省略不写.一般地,在an中,a取任意有理数,n取正整数.我们知道,乘方和加、减、乘、除一样,也是一种运算,an就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.例1 计算:(1);(2);(3).解:(1)=(-2)(-2)(-2)=-8,(2)=(-2)(-2)(-2)(-2)=16,(3)=(-2)(-2)(-2)(-2)(-2)=-32.引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.任何一个数的偶次幂是什么数?任何一个数的偶次幂都是非负数.你能把上述的结论用数学符号语言表示吗?当a>0时,an>0(n是正整数);当a=0时,an=0(n是正整数).(以上为有理数乘方运算的符号法则)a2n=(-a)2n(n是正整数);a2n-1=-(-a)2n-1(n是正整数);a2n≥0(a是有理数,n是正整数).例2 计算:(1)(-3)2,(-3)3,[-(-3)]5;(2)-32,-33,-(-3)5;让三个学生在黑板上计算.教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n 的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别.教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了.课堂练习计算:(2)(-1)2001,3×22,-42×(-4)2,-23÷(-2)3;(3)(-1)n-1.(三)、小结让学生回忆,做出小结:1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.练习设计1.当a是负数时,判断下列各式是否成立.(1)a2=(-a)2; (2)a3=(-a)3;2.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?3.若(a+1)2+|b-2|=0,求a2000·b3的值.板书设计§2.11有理数的乘方(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计教学后记§2.12科学记数法教学目标使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.教学重点和难点重点:正确运用科学记数法表示较大的数.难点:正确掌握10的幂指数特征.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.什么叫乘方?说出103,-103,(-10)3的底数、指数、幂.2.计算:(口答)3.把下列各式写成幂的形式:4.计算:101,102,103,104,105,106,1010.(二)、导入新课由第4题计算105=100000,106=1000000,1010=10000000000,左边用10的n次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿,一百亿等等.但是像太阳的半径大约是696000千米,光速大约是300000000米/秒,中国人口大约13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容 ——科学记数法.(三)、讲授新课1.10n的特征观察第4题101=10,102=100,103=1000,104=10000,1010=10000000000.提问:10n中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?练习(1)把下面各数写成10的幂的形式.1000,100000000,100000000000.练习(2)指出下列各数是几位数.103,105,1012,10100.2.科学记数法(1)任何一个数都可以表示成整数数位是一位数的数乘以10的n次幂的形式.如:100=1×100=1×102,6000=6×1000=6×103,7500=7.5×1000=7.5×103.第一个等号是我们在小学里就学习过的关于小数点移动的知识,我们现在要做的就是把100,1000,变成10的n次幂的形式就行了.(2)科学记数法定义根据上面例子,我们把大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是自然数,这种记数法叫做科学记数法.现在我们只学习绝对值大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.用字母N表示数,则N=a×10n(1≤|a|<10,n是整数),这就是科学记数法.例 用科学记数法表示下列各数:(1)1000000;            (2)57000000;        (3)696000;(4)300000000;        (5)-78000;              (6)12000000000.解:(1)1000000=106;(2)57000000=5.7×10000000=5.7×107;(3)696000=6.96×100000=6.9×105;(4)300000000=3×100000000=3×108;(5)-78000=-7.8×10000=-7.8×104;(6)12000000000=1.2×10000000000=1.2×1010.如果每次都按解的步骤去做又显得有点繁,那么利用n与数位的关系去做,试一试:(1)1000000是7位数,所以n=6,即106.(2)57000000是8位数,n=7,所以57000000=5.7×107.(3)696000是6位数,n=5,所以696000=6.96×105.(4)300000000是9位数,n=8,所以300000000=3×108. 后面两题同学们自己试一试看.(四)、课堂练习1.用科学记数法记出下列各数;8000000;5600000;740000000.2.下列用科学记数法记出的数,原来各是什么数?1×107;4×103;8.5×106;7.04×105;3.96×104.(五)、小结1.指导学生看书.2.强调什么是科学记数法,以及为什么学习科学记数法.3.突出科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.练习设计1.用科学记数法记出下列各数:(1)7000000;   (2)92000;             (3)63000000;    (4)304000;(5)8700000;   (6)500900000;     (7)374.2;             (8)7000.5.(2)下列用科学记数法记出的数,原来各是什么数?(1)2×106;(2)9.6×105;(3)7.58×107;(4)4.31×105;(5)6.03×108;(6)5.002×107;(7)5.016×102;(8)7.7105×104.3.用科学记数法记出下列各数:(1)地球离太阳约有一亿五千万千米;(2)地球上煤的储量估计为15万亿吨以上;(3)月球的质量约是7340000000000000万吨;(4)银河系中的恒星数约是160000000000个;(5)地球绕太阳公转的轨道半径约是149000000千米;(6)1cm3的空气中约有25000000000000000000个分子.4.一天有8.64×104秒,一年如果按365天计算,一年有多少秒?(用科学记数法表示)5.地球绕太阳转动(即地球的公转)每小时约通过1.1×105千米,声音在空气中传播,每小时约通过1.2×103千米.地球公转的速度与声音的速度哪个大?板书设计§2.12 科学记数法(一)知识回顾(三)例题解析(五)课堂小结例(二)观察发现(四)课堂练习练习设计教学后记 §2.13有理数的混合运算(1)教学目标1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力.教学重点和难点重点:有理数的混合运算.难点:准确地掌握有理数的运算顺序和运算中的符号问题.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.计算(五分钟练习):(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;(24)3.4×104÷(-5).2.说一说我们学过的有理数的运算律:加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.(二)、讲授新课前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?1先算乘方,再算乘除,最后算加减;2同级运算,按照从左至右的顺序进行;3如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.审题:(1)运算顺序如何?(2)符号如何?说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.课堂练习审题:运算顺序如何确定?注意结果中的负号不能丢.计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减.例3 计算:(1)(-3)×(-5)2; (2)[(-3)×(-5)]2;(3)(-3)2-(-6); (4)(-4×32)-(-4×3)2.审题:运算顺序如何?解:(1)(-3)×(-5)2=(-3)×25=-75.(2)[(-3)×(-5)]2=(15)2=225.(3)(-3)2-(-6)=9-(-6)=9+6=15.(4)(-4×32)-(-4×3)2=(-4×9)-(-12)2=-36-144=-180.注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方.(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减.课堂练习计算:(1)-72;                (2)(-7)2;               (3)-(-7)2;(7)(-8÷23)-(-8÷2)3.例1计算(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4.审题:(1)存在哪几级运算? (2)运算顺序如何确定?解: (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4=4-(-25)×(-1)+87÷(-3)×1(先乘方)=4-25-29(再乘除)=-50.(最后相加)注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1.课堂练习计算:(1)-9+5×(-6)-(-4)2÷(-8);(2)2×(-3)3-4×(-3)+15.3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号.例2计算:解===例3计算:解==也可这样来算= =(三)、小结教师引导学生一起总结有理数混合运算的规律.1.先乘方,再乘除,最后加减;2.同级运算从左到右按顺序运算;3.若有括号,先小再中最后大,依次计算.练习设计2.计算:(1)-8+4÷(-2);                           (2)6-(-12)÷(-3);(3)3·(-4)+(-28)÷7;                 (4)(-7)(-5)-90÷(-15)(5)1÷(-1)+0÷4-(-4)(-1);(6)18+32÷(-2)3-(-4)2×5.板书设计§2.13有理数的混合运算(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2、例3(二)观察发现(四)课堂练习练习设计教学后记学生已学习了有理数乘方的概念,知道了有理数乘方的意义,会利用有理数乘方法则进行有理数乘方运算.本节课在复习上节课内容的基础上,使学生进一步理解乘方的意义,并能用科学记数法表示大于10的数.本节课的重点和难点都是科学记数法.为此,通过实例,引入了科学记数法,而通过例题的讲授,使学生知道怎样用科学记数法表示绝对值大于10的数§2.13有理数的混合运算(2)教学目标1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;2.培养学生的运算能力及综合运用知识解决问题的能力.教学重点和难点重点:有理数的运算顺序和运算律的运用.难点:灵活运用运算律及符号的确定.教学方法启发式教学教学过程(一)、从学生原有认知结构提出问题1.叙述有理数的运算顺序.2.三分钟小测试计算下列各题(只要求直接写出答案):(1)32-(-2)2;(2)-32-(-2)2;(3)32-22;(4)32×(-2)2;(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1); (二)、讲授新课例4 当a=-3,b=-5,c=4时,求下列代数式的值:(1)(a+b)2; (2)a2-b2+c2;(3)(-a+b-c)2; (4)a2+2ab+b2.解:(1) (a+b)2=(-3-5)2 (省略加号,是代数和)=(-8)2=64; (注意符号)(2) a2-b2+c2=(-3)2-(-5)2+42 (让学生读一读)=9-25+16 (注意-(-5)2的符号)=0;(3) (-a+b-c)2=[-(-3)+(-5)-4]2 (注意符号)=(3-5-4)2=36;(4)a2+2ab+b2=(-3)2+2(-3)(-5)+(-5)2=9+30+25=64.分析:此题是有理数的混合运算,有小括号可以先做小括号内的,=1.02+6.25-12=-4.73.在有理数混合运算中,先算乘方,再算乘除.乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写例5已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求x2-(a+b+cd)x+(a+b)1995+(-cd)1995值.解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.所以x2-(a+b+cd)x+(a+b)1995+(-cd)1995=x2-x-1.当x=2时,原式=x2-x-1=4-2-1=1;当x=-2时,原式=x2-x-1=4-(-2)-1=5.三、课堂练习1.当a=-6,b=-4,c=10时,求下列代数式的值:2.判断下列各式是否成立(其中a是有理数,a≠0):(1)a2+1>0; (2)1-a2<0;练习设计1.计算:(1);(2);(3);(4);2.如果|ab-2|+(b-1)2=0,试求a,b的值。板书设计 §2.13有理数的混合运算(2)(一)知识回顾(三)例题解析(五)课堂小结例4、例5(二)观察发现(四)课堂练习练习设计教学后记§2.14近似数和有效数字教学目标使学生掌握近似数和有效数字的概念,并会说出每个数的有效数字.教学重点和难点重点:掌握近似数和有效数字的概念,并会说出每个数的有效数字难点:用科学记数法表示有效数字.教学方法启发式教学教学过程我们常会遇到这样的问题:(1)初一(4)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题: (3)我国的领土面积为约960万平方千米;(4)王强的体重是约49千克.960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.我们把象960万、49这些与实际数很接近的数称为近似数(approximatenumber).在实际问题中,我们经常要用近似数.使用近似数就有一个近似程度的问题,也是就精确度的问题.我们都知道,···.我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为2,就叫做精确到个位;如果结果取1位小数,则应为1.7,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为1.67,就叫做精确到百分位(或叫精确到0.01);···························.概括一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significantdigits).象上面我们取1.667为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字1、6、6、7.例1下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4;(2)0.0572;(3)2.40万解:(1)132.4精确到十分位(精确到0.1),共有4个有效数字1、3、2、4;(2)0.0572精确到万分位(精确到0.0001),共有3个有效数字5、7、2;(3)2.40万精确到百位,共有3个有效数字2、4、0.注意由于2.40万的单位是万,所以不能说它精确到百分位.例2用四舍五入法,按括号中的要求把下列各数取近似数.(1)0.34082(精确到千分位);(2)64.8(精确到个位);(3)1.504(精确到0.01);(4)0.0692(保留2个有效数字);(5)30542(保留3个有效数字);解(1)0.34082≈0.341.(2)64.8≈65.(3)1.504≈1.50.(4)0.0692≈0.069.(5)30542.≈3.05×104.注意(1)例2的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;(2)例2的(5)中,如果把结果写成30500,就看不出哪些是保留的有效数字,所以我们用科学记数法,把结果写成3.05×104. 练习1.请你举几个准确数和近似数的例子.2.圆周率···,如果取近似数3.14,它精确到哪一位?有几个有效数字?如果取近似数3.1416呢?3.下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)127.32;(2)0.0407;(3)20.053;(4)230.0千;(5)4.002.4.用四舍五入法,将下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个分位);(3)47155(精确到百位);(4)130.06(保留4个有效数字);(5)460215(保留3个有效数字).5.一桶玉米的重量大约为45.2千克.场上有一堆玉米,估计大约相当于12桶.估计这堆玉米大约重多少千克(精确到1千克)?6.王平与李明测量同一根铜管的长,王平测得长是0.80米,李明测得长是0.8米.两人测量的结果是否相同?为什么.作业:习题2.4板书设计§2.14近似数和有效数字引例:…………………  例1:………………….. 例2:……………………概念:……………   课堂练习练习设计教学后记§2.15用计算器进行数的简单运算教学目标使学生掌握用计算器进行数的简单运算.教学重点和难点使学生掌握用计算器进行数的简单运算教学方法启发式教学教学过程问题已知一个圆柱的底面半径长2.32cm,高为7.06cm,求这个圆柱的体积.我们知道,圆柱的体积=底面积×高.因此,计算这个圆柱的体积就要做一个较复杂的运算: 这种计算,我们可以利用电子计算器(简称计算器)来完成.计算器是一种常用的计算工具,利用计算器可以进行许多种复杂的运算.下图是两种常见的计算器的面板示意图.图2.15.1由图2.15.1可见,计算器的面板由键盘和显示器两部分组成.如将6.2℃化为6°12′想一想图2-15-1(2)中的计算器要关机,应怎样按键?键盘的每个键上都标明了这个键的功能.例如图2.15.1(1)中,键ON/C是开机键,使用计算器时,先按一下这个键,电源就接通了;键OFF是关机键,停止使用计算器时,按一下这个键,电源就切断了;键×是乘法运算键,按这个键表示进行乘法运算,等等.有些键的旁边还注明这些键兼有别的功能(第二功能).如图2.15.1(1)中的键.直接按这个键,它执行除法运算;2ndF先按键,再按这个键,它执行第二功能,将十进制的度,化成六十进制的度、分、秒.显示器是用来显示计算时输入的数据和计算结果的.图2.15.1(1)中的显示器为单行显示,图2.15.1(2)中的显示器则是双行显示.各种计算器使用时,按键的方法有时会有不同.但做加、减、乘、除四则运算的方法通常都是一样的,下面我们以图2.15.1(1)中的计算器为例,说明用计算器进行简单计算的方法.例1用计算器求345+21.3.用计算器进行四则运算,只要按算式的书写顺序按键,输入算式,再按等号键,显示器上就显示出计算结果.解用计算器求345+21.3的过程可以用下表表示: 按键顺序显示结果345345.+21·321.3=366.3所以345+21.3=366.3.做一做按例1的方法,用计算器求105.3-243.例2用计算器求31.2÷(-0.4).输入数据-0.4的方法是:先输入0.4,再按符号变换键+/-.解用计算器求31.2÷(-0.4)的按键顺序是:31.2÷0.4+/-=.所以31.2÷(-0.4)=78.注意:(1)31.2÷(-0.4)不能按成31.2÷-0.4=,那样计算器会按31.2-0.4进行计算的.(2)输入0.4时可以省去小数点前的0,按成.4.做一做按例2的方法,用计算器求8.2×(-4.3)÷2.5.例3用计算器求62.2-4×(-7.8).这是减法和乘法的混合运算.对于加、减、乘、除法和乘方的混合运算.只要按算式的书写顺序输入,计算器会按要求算出结果.因此,本题的按键顺序是:62.2-4×÷7.8%=.所以,62.2-4×(-7.8)=93.4.做一做按例3的方法,用计算器求(-59)×2÷4.2÷(-7).例4用计算器求2.72.用计算器求一个数的正整数次幂,一般要用乘幂运算键yx.解用计算器求2.72的按键顺序是2.7yx2=.所以2.72=7.29.注意一般地,求一个正数的n次方都可以按上面的步骤进行.求一个负数的n次方,可以先求这个负数的相反数的n次方,如果n是奇数,那么再在所得结果的前面加上负号.做一做(1)按例4的方法求(2)用计算器求出本节开头的圆柱的体积(结果精确到mm,取3.14).练习:见课本。作业:习题2.15 板书设计§2.15用计算器进行数的简单运算例1:…………………  例2:………………….. 例3:……………………  课堂练习练习设计教学后记

10000+的老师在这里下载备课资料