【教学目标】 了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数;会用正负数表示生活中常用的具有相反意义的量;培养学生的数学应用意识。【内容简析】 本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。能正确识别负数、用正负数表示具有相反意义的量是本节的难点。教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。教学中应多结合实例加深对负数的认识。【流程设计】 一、情景创设 1.引导学生回忆小学学过的数,并回答小学学过的最小的数是谁?是否存在比零小的数?在小学遇到0-2、3-5这类题会算吗?
2.你看过电视或听过广播中的天气预报吗?(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25°C,10°C,零下10°C,零下30°C。 为书写方便,将测量气温写成25,10,-10,-30,再如中国地形图上的海拔标注数据8848.13,-155之类的数是什么意思?怎样用数学来区分高出警戒水位1米与低于警戒水位1米呢? 二、新知探索 1.教师由以上实例归纳出正数与负数的描述性概念。 像25,10,8848,大于0的数叫正数;像-10,-30,-155这样在正数前面加上“-”(负号)的数叫做负数;0既不是正数也不是负数。 给出板书: 正数——大于0的数 负数——正数前面加“-”号的数(小于0的数) 0——既不是正数,也不是负数 说明:①负数前面的“-”号的读法,“-5”应读作“负5”; ②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;
③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。 小资料:世界各国对负数的认识和接受也有一个过程。如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。直到1831年还有数学家认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x= -2,他认为这个结果是荒唐的,他不懂得x= -2正是说明两年前父亲的岁数将是儿子的两倍。二、范例共做 例1:所有正数组成正数集合,所有负数组成负数集合。把下列各数中的正数和负数分别填在表示正数与负数集合的圈里: -11, 4.8, +7.3, 0, -2.7, -61, 127, -8.12, -4
3 „„ „„ 正数集合 负数集合 例2:自己任意写出六个正数与六个负数分别填入相应的大括号里:
正数集合{ „} 负数集合{ „} 注:由于正数和负数都有无数个,在表示正数和负数的集合中常加上省略号。 例3:规定向前走为正,两个学生一组做游戏,如 甲:向前走2步 乙:2 甲:向后走3步 乙:-3 甲:-4 乙:向后走4步 甲:0 乙:原地不动 注:通过设计类似的游戏活动使学生加深对负数的认识。 四、巩固练习 1.-10表示支出10元,那么+50表示 ; 如果零上5度记作5°C,那么零下2度记作 ; 如果上升10m记作10m,那么-3m表示 ; 太平洋中的马里亚纳海沟深达11034米,可记作海拔 米(即低于海平面11034米)。
比海平面高50m的地方,它的高度记作海拨 ; 比海平面低30m的地方,它的高度记作海拨 ; 2.下面说法正确的是( ) A.正数都带有“+”号 B.不带“+”号的数都是负数 C.小学数学中学过的数都可以看作是正数 D.0既不是正数也不是负数 3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作 。 4.某物体向右运动为正,那么-2m表示 ,0表示 。 5.一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸 ,最小不超过标准尺寸 。 五、小结提高 1.正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。如果把一种意义规定为正,则相反意义的量规定为负。常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;
2.正数是比零大的数,正数前面加“-”号的数叫负数。所有负数小于零,零既不是正数也不是负数。 六、课后思考 1.-a一定是负数吗? 2.在月球表面,“白天”的温度可达127°C, 太阳落下后的“月夜”气温竟下降到-183°C,请问在月球上温差是多少度?