有理数的加法(二)——运算律探索
问题1:在小学中我们学过哪些加法的运算律?问题2:加法的运算律是不是也可以扩充到有理数范围?
请完成下列计算(1)(-8)+(-9)(-9)+(-8)(2)4+(-7)(-7)+4(3)6+(-2)(-2)+6(4)[2+(-3)]+(-8)2+[(-3)+(-8)](5)10+[(-10)+(-5)][10+(-10)]+(-5)=====问题3:说一说,你发现了什么?再试一试问题4:从中你得到了什么启发?
有理数的加法中,两个数相加,交换加数的位置和不变。加法交换律:a+b=b+a有理数加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。加法的结合律:(a+b)+c=a+(b+c)
问题5:为什么我们要学习加法的运算律呢?例1计算:16+(-25)+24+(-35)问题6:此题你是抓住数的什么特点使计算简化的?依据是什么?解:原式=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20
做下面的练习,并思考你是如何使计算简化的?常用的三个规律:1、一般地,总是先把正数或负数分别结合在一起相加。2、有相反数的可先把相反数相加,能凑整的可先凑整。3、有分母相同的,可先把分母相同的数结合相加。(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)(3)9+(-6.82)+3.78+(-3.18)+(-3.78)(4)
例2:下陈中学食堂为了供我们同学吃饭,在市场上购进8袋大米,由于当时没带秤,他就以每袋大米为90千克作为标准重量交易。事后,食堂人员称了一下,8袋大米的称重如下:91、89、91.2、91.3、88.7、88.8、91.8、91.1(单位:千克)。请你帮食堂算一算,他是赚了还是亏了?赚或亏了多少?8袋大米的实际总重量是多少?
练习一、1、(+45)+(-91)+5+(-9)2、(-18.65)+(-6.15)+18.75+(+6.15)3、1+(-2)+3+(-4)+5+(-6)+7+(-8)+……+99+(-100)二、某升降机第一次上升6米,第二次又上升4米,第三次下降5米,第四次又下降7米,这时升降机在初始位置的上方还是下方?相距多少米?升降机共运行了多少米?
请同学们谈一谈这节课的体会和收获。本节小结:1、通过具体有理数的计算,把加法运算律从非负数范围扩大到有理数的范围。2、掌握加法运算律的法则及公式,并适当的运用运算律进行简化计算。3、有理数加法解决实际问题,体会求简意识。
谢谢!