241有理数的加法
加入VIP免费下载

241有理数的加法

ID:1184306

大小:47.5 KB

页数:4页

时间:2022-07-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二十课时一、课题§2.4有理数的加法(1)二、教学目标1.使学生掌握有理数加法法则,并能运用法则进行计算;2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.三、教学重点和难点重点:有理数加法法则.难点:异号两数相加的法则.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、师生共同研究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5.                                                                  ①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.                                                                     ②现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;                                                                   ③上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;第4页共4页                                                                     ④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;                                                                       ⑤上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.                                                                             ⑥上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.(二)、应用举例 变式练习例1 计算下列算式的结果,并说明理由:(1)(+4)+(+7);    (2)(-4)+(-7);      (3)(+4)+(-7);      (4)(+9)+(-4);(5)(+4)+(-4);     (6)(+9)+(-2);      (7)(-9)+(+2);      (8)(-9)+0;(9)0+(+2);        (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.解:(1) (-3)+(-9)            (两个加数同号,用加法法则的第2条计算)第4页共4页 =-(3+9)                 (和取负号,把绝对值相加)=-12.下面请同学们计算下列各题:(1)(-0.9)+(+1.5);   (2)(+2.7)+(-3);  (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评.(三)、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.七、练习设计1.计算:(1)(-10)+(+6);     (2)(+12)+(-4);    (3)(-5)+(-7);    (4)(+6)+(+9);(5)67+(-73);        (6)(-84)+(-59);   (7)33+48;        (8)(-56)+37.2.计算:(1)(-0.9)+(-2.7);          (2)3.8+(-8.4);               (3)(-0.5)+3;(4)3.29+1.78;              (5)7+(-3.04);                (6)(-2.9)+(-0.31);(7)(-9.18)+6.18;          (8)4.23+(-6.77);           (9)(-0.78)+0.4*.用“>”或“<”号填空:(1)如果a>0,b>0,那么a+b______0;(2)如果a<0,b<0,那么a+b______0;(3)如果a>0,b<0,|a|>|b|,那么a+b______0;(4)如果a<0,b>0,|a|>|b|,那么a+b______0.5*.分别根据下列条件,利用|a|与|b|表示a与b的和:(1)a>0,b>0;                             (2)a<0,b<0;(3)a>0,b<0,|a|>|b|;                (4)a>0,b<0,|a|<|b|.八、板书设计第4页共4页 2.4有理数的加法(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计九、教学后记“有理数加法法则”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方第4页共4页

10000+的老师在这里下载备课资料