1.3.1有理数的加法(2)第二课时三维目标一、知识与技能(1)能运用加法运算律简化加法运算.(2)理解加法运算律在加法运算中的作用,培养学生的观察能力和思维能力.二、过程与方法经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.三、情感态度与价值观体会有理数加法运算律的应用价值.教学重、难点与关键1.重点:有理数加法运算律.2.难点:灵活运用加法运算律.3.关键:正确理解加法运算律在加法运算中的作用.教具准备投影仪.四、教学过程一、复习提问,引入新课1.叙述有理数的加法法则.2.在小学里,数的加法有哪些运算律?五、新授
在小学里,数的加法满足交换律、结合律.如:5+3.5=3.5+5,(5+3.5)+2.5=5+(3.5+2.5).引进负数后,这些运算律还适用吗?探索:例1.计算:30+(-20),(-20)+30.两次所得的和相同吗?换几个加数试一试,让学生自己得出:有理数的加法中,两个数相加,交换加数的位置和不变,即加法交换律:a+b=b+a.例2.计算:[8+(-5)]+(-4),8+[(-5)+(-4)].两次所得的和相同吗?换几个加数再试一试.从而得到:有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即加法结合律:(a+b)+c=a+(b+c).上述a、b、c表示任意有理数,可以是正数,也可以是负数.这样,多个有理数相加可以任意交换加数位置,也可以先把其中的几个数相加,使计算简化.例3.计算:16+(-25)+24+(-35).分析:先观察题目中数据特点,根据运算律,选择合理途径.本题采用正、负数分开相加的方法.解:原式=(16+24)+[(-25)+(-35)]=40+(-60)=-20
例4.每袋小麦的标准重量为90千克,10袋小麦称重记录如课本图1.3-3所示(课本第19页),与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少?分析:怎样求这10袋小麦的总重量呢?这是有理数加法在实际中的应用,本题有两种解法,教学时可先让学生相互交流,提出自己的想法,对不同的解法进行比较.解法1:先计算10袋小麦的总重量.91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4,再计算标准重量:90×10=900.所以这10袋小麦总计超过905.4-900=5.4(千克)解法2:先计算总误差,然后再求10袋小麦的总重量.将每袋小麦超过标准重量的千克数记作正数,不足的千克数记作负数,10袋小麦的对应的数为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.???+1+1+1.5+(-1)+1.2+1.3+(1.3)+(-1.2)+1.8+1.1=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1)=5.490×10+5.4=905.4所以10袋小麦总计超过标准5.4千克,总重量为905.4千克.五、巩固练习1.课本第20页,练习1、2.六、课堂小结
本节课我们探索了有理数加法的运算律,灵活运用加法的运算律使运算简便.一般情况下,将互为相反数的数结合相加;同分母的分数能凑整的数结合;正数、负数分别相加,以使计算简便.七、作业布置1.课本第25页习题1.3第2题,第26页第9、10、12题.九、板书设计:1.3.1有理数的加法(2)第二课时1、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c).上述a、b、c表示任意有理数,可以是正数,也可以是负数.2、随堂练习。3、小结。4、课后作业。十、课后反思