有理数的加法教案3
加入VIP免费下载

有理数的加法教案3

ID:1184643

大小:119 KB

页数:3页

时间:2022-07-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.6有理数的加法教学目标1.使学生掌握有理数加法法则,并能运用法则进行计算;2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.教学重点:有理数加法法则.教学难点:异号两数相加的法则.教学过程一、有理数的加法法则复习两个负数的大小比较方法.首选,我们来看一个大家熟悉的实际问题:小明在一条东西向的跑道上,先走了20米,又走了30米,能确定他现在位于原来位置的哪个方向,与原来位置相距多少米吗?(规定向东为正)(1)先向东走20米,又向东走了30米,那么他一共向东走了50米.也就是(+20)+(+30)=+50……………………………………①(2)若先向西走了20米,又向西走了30米,那么他一共向西走了50米.也就是(-20)+(-30)=-50……………………………………②现在,请同学们说出其他可能的情形.答:先向东走20米,再向西走30米,则他一共向西走了10米,也就是(+20)+(-30)=-10;…………………………………③先向西走了20米,再向东走30米,则一共向东走了10米,也就是(-20)+(+30)=+10;…………………………………④先向东走了20米,然后不走了,则他一共向东走了20米.也就是(+20)+0=+20;……………………………………⑤先向西走了30米,然后不走了,则他一共向西走了30米,也就是(-30)+0=-30;……………………………………⑥上面我们列出了两个有理数相加的6种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这6个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?从两个方面来考虑::结果的符号怎么定?绝对值怎么算?从而认识到有理数的加法必须确定和的符号和绝对值.这里,先让学生思考几分钟,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得04.一个数同0相加,仍得这个数. 注意:一个有理数由符号和绝对值两部分组成,进行加法运算时,应注意确定和的符号和绝对值二、应用举例例1口答下列算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7);(3)(+4)+(-7);(4)(+9)+(-4);(5)(+4)+(-4);(6)(+9)+(-2);(7)(-9)+(+2);(8)(-9)+0;(9)0+(+2);(10)0+0.学生逐题口答后,然后小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.异号两数相加,如何来确定符号,我们可以用谁大跟谁“姓”.解:(1)(-3)+(-9)(两个加数同号)=-(3+9)(和取负号,把绝对值相加)=-12.注意:首选应先定符号练习:下面请同学们计算下列各题:(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演.抢答: (1)(-0.9)+(-2.7);(2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;(5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0三、小结这节课我们主要通过具体的实例得出了有理数加法的法则.应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.如何来记住加法法则.四、作业作业本及同步训练课后小记:这节课至关重要,因为是学习有理数运算的基础课,也是以后学习的基础.在开头的时候,提问:如何来比较两个数?有些学生不能一下子转过弯来了,从而上当了.应看是怎样的两个数.后面在讲到有理数的加法法则时,特别对于两个绝对值不相等的异号的两数相加:谁大跟谁“姓”,然后大减小.像口诀一样,同学们容易理解,也容易掌握.在讲到这个法则时,我还举了一个例子:就像两个势力,一个是“正”,一个是“负”(1)如果两个势力是一样强大的,那么相互抵消.(绝对值相等异号两数相加).(2)如果是同一个势力,那么这个势力就更加强大.(同号两数相加).(3)如果两个势力其中一个弱一些,那么他被另一个势力消灭了,但另一个也会减弱.(绝对值不同的异号两数相加).这样讲比较通俗,学生能接受.

10000+的老师在这里下载备课资料