1.3.1 有理数的加法(二)
加入VIP免费下载

1.3.1 有理数的加法(二)

ID:1184701

大小:26 KB

页数:12页

时间:2022-07-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1.3.1有理数的加法(二)131 1.3.1有理数的加法(二)131 1.3.1有理数的加法(二)131 1.3.1有理数的加法(二)131 1.3.1有理数的加法(二)131 有理数的加法(二)教学目标1,经历有理数加法运算律的探索过程,理解有理数加法的运算律.2,能用运算律简化有理数加法的运算.3,使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力.教学难点合理运用运算律知识重点加法交换律和结合律,及其合理、灵活的运用教学过程(师生活动)设计理念设置情境引入题回顾复习:小学时已学过的加法运算律有哪几条?学生回答后教师接着问:你能用自己的语言或举例子说明一下加法的交换律与结合律吗?提出问题:这些运算律在有理数加法中适用吗?这就是这节我们要研究的题.分析问题探究新知探讨加法运算律在有理数范围内是否适用.1,有理数加法交换律的学习.问题1:我们如何知道加法交换律在有理数范围内是否适用?(先由教师举一些实际例子说明,然后鼓励学生举不同的数验证)问题2:我们如何用语言叙述有理数加法的交换律呢?(这个问题请学生回答,并互相补充) 教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变.”问题3 :你能把有理数加法的交换律用字母表示吗?由学生回答得出a+b=b+a后,教师说明:〔1〕式子中的字母分别表示任意的一个有理数.(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。(2)在同一个式子中,同一个字母表示同一个数.2,有理数加法结合律的学习.(基本步骤同于加法交换律的学习)“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律. 让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性.讨论交流解决问题思考:如果四个或四个以上的有理数相加时,还能使用加法交换律与结合律吗?与同伴交流你的看法,并举例子说明你的观点.例1计算:(1)16+(-2)十24+(-3);(2)(-248)+(+433)+(-72)+(-433).师生共同分析完成,如第(1)题,教师板书:解:(1)原式=16+24+(-2)十(-3)(此时教师问:依据是什么?)=(16+24)+[(-2)+(-3)〕(依据是什么?)=40+(一60)=20解题后反思:先让学生按从左到右的顺序依次相加,算一算,再让学生说一说,通过这两道题 目的计算,你有什么体会?(使用运算律能使运算简便,简化运算的方法有:把正数和负数分别相加,有相反毅的先把相反数相加,能凑整的先凑整等等).例2教科书第24页例4这题可这样处理:I1,让学生估计一下总重量是超过标准重量还是不足标准重量.2,让学生思考如何计算,学生能给教科书提供的解法1即先10袋小麦的总质量,再计算总计超过多千克。此时可组织学生讨论:有没有不同的解法?(此时,如果已有学生提出教材的解法2的思路,则请学生讨论这种解法的合理性。并比较这两种解法。(这是一个有理数应用的例子,这两种解法都应让学生掌握,尤其是解法2更是体现学习有理数加法运算的必要性。注重学习小组内的合作与交流,让每个学生都能从与同伴的交流中获益。鼓励学生在已有知识的基础上对结论做进一步探索,同时也为接下去的应用打下基础。强调算理,让学生在具体运算中体会运算律对简化运算的作用。通过例1的学习让学生明白:加法的交换律与结合律通常是结合起使用的。此处与书本相对增加了一道题,主要是考虑到存在互为相反数的两数相加的简便性。也是培养学业生能力的需要。堂练习教科书第2页练习本作业必做题:第31页习题31第2、9、10阅读教科书第2页“实验与探究”有兴趣的可完成幻方。本教育评注(堂设计理念,实际教学效果及改进设想)1,本节在开始时就先复习小学时学的加法运算律,然后提出一个富有启发性且具有探索意义的问题:“我们如何知道加法的交换律在有理数范围内是否适用?’’然后让学生通过一些实际例子验证.尤其是鼓励学生多举一些数验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.(在小学、中学阶段,对运算律都不介绍证明方法,只结合具体例子做些脸证). 2,注重学生学习方式的改变,提倡小组合作交流,让每个学生都在与同伴的交流中获益,同时也注重师生之间的交流对话,教师适时引导.3,重视数感的培养.学生数感的养成不是一朝一夕能达成的,在教学中应充分挖掘学生能力的生长点,数感也是如此,例2中在计算之前让学生估算之意就在于此.4,有理数的运算,既要注意减少一些繁、难的练习题,又要注意掌握有理数的运算需要一定量的练习.更要强调的是算理,要求学生能说出每一步计算的依据.,例1解题后的反思,例2多样化解法的比较,设计意图在于培养学生良好的学习习惯。附板书:131 有理数的加法(二)

10000+的老师在这里下载备课资料