§2.4有理数的加法(1)教学目标1.使学生掌握有理数加法法则,并能运用法则进行计算;2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.教学重点和难点重点:有理数加法法则.难点:异号两数相加的法则.教学方法:三疑三探教学教学过程一、创设情景,导入新课1.复习引入前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.2.学生设疑两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5. ①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3. ②现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1; ③上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; ④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; ⑤上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0. ⑥上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.二.解疑合探例1 计算下列算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7); (4)(+9)+(-4);
(5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2); (8)(-9)+0;(9)0+(+2); (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.解:(1) (-3)+(-9) (两个加数同号,用加法法则的第2条计算)=-(3+9) (和取负号,把绝对值相加)=-12.下面请同学们计算下列各题:(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:1.引导学生自编习题。2、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.3、作业1.计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);(5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.
2.计算:(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.4*.用“>”或“<”号填空:(1)如果a>0,b>0,那么a+b______0;(2)如果a<0,b<0,那么a+b______0;(3)如果a>0,b<0,|a|>|b|,那么a+b______0;(4)如果a<0,b>0,|a|>|b|,那么a+b______0.4、板书设计2.4有理数的加法(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习