有理数的加法和减法一、知识链接1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1)。这里用到正数和负数的加法。那么,怎样计算4+(-2)下面我们一起借助数轴来讨论有理数的加法。二、自主探究1、借助数轴来讨论有理数的加法1)如果规定向右为正,向左为负,那么一个人向右走4米,再向右走2米,两次共向右走了米,这个问题用算式表示就是:2)如果规定向右为正,向左为负,那么一个人向左走5米,再向左走3米,两次共向左走多少米?很明显,两次共向左走了米。这个问题用算式表示就是:如图所示:3)利用数轴,求以下情况时这个人两次运动的结果:①先向左走3米,再向右走5米,这个人相当于从起点向走了米;②先向右走3米,再向左走5米,这个人相当于从起点向走了米;③先向右走5米,再向左走5米,这个人相当于从起点向走了米;出这三种情况运动结果的算式4)如果这个人第一秒向右(或向左)走5米,第二秒原地不动,两秒后这个人从起点向右(或向左)运动了米。写成算式就是2、师生归纳两个有理数相加的几种情况(以上有6个算式)。3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取的符号,并把相加。(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值.互为相反数的两个数相加得;(3)一个数同0相加,仍得。4.新知应用例1计算(自己动动手吧!)
(1)(-3)+(-9);(2)(-4.7)+3.9.【课堂练习】:1.用算式表达下列的结果:(1)温度由-40C上70C;(2)收入7元,又支出5元。2.填空:(口答)(1)(-4)+(-6)=;(2)3+(-8)=;(4)7+(-7)=;(4)(-9)+1=;(5)(-6)+0=;(6)0+(-3)=;2.课本P18第2、3、4题【要点归纳】:有理数加法法则:【拓展训练】:1.判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。2.已知│a│=8,│b│=3;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值。有理数的加法【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:灵活运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、2、计算⑴30+(-20)=(-20)+30=⑵[8+(-5)]+(-4)=8+[(-5)]+(-4)]=思考:观察上面的式子与计算结果,你有什么发现?1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,
即:两个数相加,交换加数的位置,和.式子表示为三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子表示为想想看,式子中的字母可以是哪些数?例2计算:1)16+(-25)+24+(-35)2)(—2.48)+(+4.33)+(—7.52)+(—4.33)例3每袋小麦的标准重量为90千克,10袋小麦称重记录如下:919191.58991.291.388.788.891.891.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下。【要点归纳】:你会用加法交换律、结合律简化运算了吗?【拓展训练】1.计算:(1)(-7)+11+3+(-2);(2)2.绝对值不大于10的整数有个,它们的和是.3、填空:(1)若a>0,b>0,那么a+b0.(2)若a<0,b<0,那么a+b0.(3)若a>0,b<0,且│a│>│b│那么a+b0.(4)若a<0,b>0,且│a│>│b│那么a+b0.4.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?
有理数的减法(1)【导学指导】一、知识链接1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为—154米,两处的高度相差多少呢?试试看,计算的算式应该是.能算出来吗,画草图试试2、长春某天的气温是―3°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3―(―3);想想看,温差到底是多少呢?那么,3―(―3)=;二、自主探究1、还记得吗,被减数、减数、差之间的关系是:被减数—减数=;差+减数=。2、请你与同桌伙伴一起探究、交流:要计算3―(―3)=?,实际上也就是要求:?+(—3)=3,所以这个数(差)应该是;也就是3―(―3)=6;再看看,3+3=;所以3―(―3)3+3;由上你有什么发现?请写出来.3、换两个式子计算一下,看看上面的结论还成立吗?—1—(—3)=,—1+3=,所以—1—(—3)—1+3;0—(—3)=,0+3=,所以0—(—3)0+3;4、归纳1)法则:2)字母表示:三、新知应用1、例题例4.计算:(1)(-3)―(―5);(2)0-7;(3)7.2―(―4.8);(4)(-3;请同学们先尝试解决【要点归纳】:有理数减法法则:【拓展训练】1、计算:(1)(-37)-(-47);(2)(-53)-16;
(3)(-210)-87;(4)1.3-(-2.7);(5)(-2)-(-1);2.分别求出数轴上下列两点间的距离:(1)表示数8的点与表示数3的点;(2)表示数-2的点与表示数-3的点;有理数的减法(2)一、知识链接1、一架飞机作特技表演,起飞后的高度变化如下表:高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米记作+4.5千米—3.2千米+1.1千米—1.4千米请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米。2、你是怎么算出来的,方法是二、自主探究1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写如:(-20)+(+3)-(-5)-(+7)有加法也有减法=(-20)+(+3)+(+5)+(-7)先把减法转化为加法=-20+3+5-7再把加号记在脑子里,省略不写可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.4、完整写出解题过程
5、探究:在用数轴上,点A、B分别表示数a、b.利用有理数减法,分别计算下列情况下点A、B之间的距离:a=2,b=6;a=6,b=2;a=2,b=-6;a=-2,b=6.你发现点A、B之间的距离与数a、b之间的关系吗?【课堂练习】计算:(1)1—4+3—0.5;(2)-2.4+3.5—4.6+3.5;(3)(—7)—(+5)+(—4)—(—10);(4);【拓展训练】:计算:1)27—18+(—7)—322)