《有理数加法法则》教学设计教学目标:1、理解加法的意义。 2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。 3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。教学重点:法则的探索与应用教学难点:异号两数相加教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。教学过程:一、复习回顾1、一个不为零的有理数可以看做是由哪两部分组成的?2、比较下列各组数绝对值哪个大?①-22与30;②-与;③-4.5和63、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。) 二、新知探究1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。2、你还能举出类似用加法运算的实例吗?
3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?4、总结归纳有理数的加法法则。突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。(设置问题情境,探究、总结、归纳法则。对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,然后说出这些算式的实际意义更利于理解加法的意义。我认为只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些。)三、运用法则例:计算(1)(+2)+(-11) (2)(-12)+(+12) (3)(+20)+(+12)(4)(-)+(-) (5)(-3.4)+(+4.3) (6)(-5.9)+0思维过程:一“看”二“定”三“和差”(主要是通过设置一组题目,理解法则,并展现思维过程“一看、二定、三和差”,规范学生的解题过程)四、巩固法则
1、开火车游戏。第一位同学说一个算式,第二位同学说答案,第三位同学接着说一个加法算式,第四位同学说答案,依次类推,谁卡住,谁表演节目。2、填数游戏。 将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入右图的9个空格中,使得每行的三个数,每列的三个数,斜对角的三个数相加均为03、思考:两个有理数相加,和一定大于每一个加数吗? (设置了两个游戏:开火车和填数,另外就是打破了小学的思维定势“和总是大于加数”,引入负数后,是有变化的。设置问题“两个有理数相加,和一定大于每一个加数吗?”让学生对有理数加法理解的更深一些。)五、小结加法顺口溜:有理加减不含糊,同号异号分清楚;同号相加号相随,异号相减号大绝;相反数、和为0;碰见0、不变形。(用一段“顺口溜”识记加法法则)