七年级上册2.2.1有理数的减法壶滨初中金泽勇【教学目标】Ø知识目标:掌握有理数的减法法则,熟练地进行有理数的减法运算.Ø能力目标:培养学生观察、归纳的数学能力及初步掌握数学学习转化的数学思想.Ø情感目标:过积极参与探索有理数的减法法则及其应用的数学活动,体会相应的数学思想、数学与现实生活的紧密联系,增强应用意识,提高学生的学习兴趣.【教学重点、难点】Ø重点:有理数的减法的运算法则,以及法则的应用.Ø难点:在实际生活中,正、负关系的确定以及原有知识的掌握.【教学方法】观察、归纳、合作交流、对比、类比等.【教学过程】一、创设情境,激发兴趣一天,厦门的最高温度是9℃,哈尔滨的最高气温是-7℃,那么这一天厦门的最高温度比哈尔滨的最高气温高多少摄氏度?列出算式.由学生回答结果,在学生回答的基础上,让学生用式子加以表示:9-(-7)=16.提出问题:怎么进行这里的减法运算呢?有理数的减法法则是什么?二、合作学习,共同归纳1.不妨我们看一个简单的问题:9-(-7)=16. 9 +(?)=16. 大家注意观察上面的两个算式,你能发现什么规律?先个人研究,而后交流. 比较两式,可以发现:9“减去-7”与“加上+7”结果是相等的,即 减法变加法变相反数2.归纳:全班交流,从上述结果我们可以发现规律:减去一个数,等于加上这个数的相反数.这就是有理数减法法则,由此可见,有理数的减法运算实质转化为加法运算.三、实践应用,拓展延伸应用1:计算:(1)5-(-5)(2)0-7-5 (3)(-1.3)-(-2.1) (4)1-2 (5)(-6)+(-5)在学生口答的基础上,由教师引导归纳::(1)有理数减法是转化为有理数加法实施的.在进行减法运算时,首先应弄清减数的符号(是“+”号,还是“-”号);(2)将有理数减法转化为加法时,要同时改变两个符号:一个是运算符号由“-”变以
“+”号;另一个是减数的性质符号.应用2:某天北京中午的气温是零上3℃,到午夜气温下降了9℃,那么北京午夜的气温是多少摄氏度?此例说明,在有理数范围内,不存在“不够减”的减法.四、尝试反馈,巩固练习1.计算(1)(-2.5)-1.5 (2)-(-) (3)(-1)-(-4)-3 (4)1-2 (5)[8+(-7)]-152.填空:(1)温度3℃比-8℃高___________; (2)温度-9℃比-1℃低_____________;(3)海拔-20m比-30m高________;(4)从海拔22m到-10m,下降了______.3.已知一个数与3的和是-10,求这个数.4.求出下列每对数在数轴上对应点之间的距离:(1)3与-2.2 (2)4与2 (3)-4与-4.5(4)-3与2 你能发现所得的距离与这两数的差有什么关系吗?五、交流反思,形成结构(师生共同完成)1.通过上面的练习,你能总结出有理数减法与小学里学过的减法的不同点吗?(1)被减数可以小于减数.如:1-5 ;(2)差可以大于被减数,如:(+3)-(-2);(3)有理数相减,差仍为有理数;(4)大数减小数,差为正数;小数减大数,差为负数;2.根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算.六、布置作业 作业本中的相应部分.
初中数学七年级上册2.2.2有理数的减法壶滨初中周智海【教学目标】知识目标:理解有理数加减法可以互相转化,会进行加减混合运算;能力目标:培养观察、讨论、积极思维探索的能力及计算的准确能力.情感目标:激发学生对数学的兴趣,培养学生热爱数学的情感.【教学重点、难点】重点:写成省略加号的和的形式及熟练地进行有理数的加减混合运算.难点:能灵活运用加法运算律进行有理数的加减混合运算.【教学方法】比较、归纳、探索、练习等.【教学过程】一、创设情境,激发兴趣(-1)-(-2)+(-3)-(-4)+(-5)-(-6)…(-49)-(-50)在学生讨论交流下,提出问题(1)如何解该题?(2)如何将减号进行转变?二、合作学习,共同归纳根据上题,我们知道有理数的减法是先把它化为有理数的加法,即加减统一成加法1.提出问题:-(+)+(-)-(-)如何统一成加号?学生回答:+(-)+(-)+(+)2.省略加号如何表示?由教师讲解:在一个和式里,通常把各个加数的括号与它前面的加法省略不写.形如:--+1.如何读呢?总结读法:按和式读做“正、负、负与正的和”按运算意义读做“减减加” 4.你认为如何计算:-(+)+(-)-(-)
由学生合作交流,教师引导下得出有理数加减混合运算步骤:(1)利用减法法则,将减法统一为加法.(2)省略加号的和的形式,简化算式.(3)运用加法交换律、结合律,使运算简单.三、实践应用,拓展延伸应用1:把写下式成省略加号的和的形式,并把它读出来.(-3)+(-8)-(-6)+(-7)由学生完成,并用两种方法读出.应用2:计算:(1)(+16)+(-29)-(-7)-(+11)+(+9);(2)(-3.1)-(-4.5)+(+4.4)-(+10.3)+(-4.5);(3)(+)-(+5)+(-)-(+)+(+4);(4)(-2)-(-4.7)-(+0.5)+(-3.2).法一:按正常顺序来解(从左到右)法二:运用简便方法来解(加法交换律和结合律)问:该如何灵活运用?根据上述解题过程,师生共同归纳.(1)使符号相同的加数放在一起.(2)互为相反数的放在一起.(3)使和为整数的加数放在一起.(4)使分母相同的加数放在一起.应用3:一储蓄所在某时段内共理了8项现款储蓄业务:取出63.7元,存入150元,取出200元,存入120元,存入300元,取出112元,取出300元,存入100.2元.问该储蓄所在这一时段内现款增加或减少了多少元? 由师生共同合作、交流来完成。四.尝试反馈,巩固练习1.把下列各式中的减法转化为加法,再写成省略加号的和的形式,并把它读出来:(1)(-7)+(-8)-(-9);(2)(-32)-(+17)-(-65)-(-24)2.计算:(1)7.8+(-1.2)-(-0.2);(2)-5.3-(-6.1)-(-3.4)+7;(3)-+--; (4)-5.75-[(-3)+(-5)]-3.125;3.一电脑公司仓库8月1日库存某种型号的电脑20台,8月2日到6日该种型号的电脑进出记录如下表,问到8月6日止,库存该种电脑多少台? 记运进为正,单位:台日期8月2日8月3日8月4日8月5日8月6日进出数量30-21-160-9 4.某检修小组乘汽车沿公路检修路线,约定前进为正,后退为负,某天从A地出发到收工时
所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5(1)问收工时距A地多远?(2)若每千米耗油0.2升,问从A地出发到收工时共耗油多少升?五.交流反思,形成结构(师生共同完成)1.有理数加减混合运算步骤:(1)利用减法法则,将减法统一为加法.(2)省略加号的和的形式,简化算式.(3)运用加法交换律、结合律,使运算简单2.进行有理数加减混合运算使用交换律、结合律的简便方法(1)使符号相同的加数放在一起.(2)互为相反数的放在一起.(3)使和为整数的加数放在一起.(4)使分母相同的加数放在一起.六、布置作业 作业本中的相应部分。