课题: 1.4.1有理数的乘法(3)教学目标 1,熟练有理数的乘法运算并能用乘法运算律简化运算.2,让学生通过观察、思考、探究、讨论,主动地进行学习.3,培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.教学难点 正确运用运算律,使运算简化知识重点 运用运算律,使运算简化教学过程(师生活动) 设计理念设置情境引入课题 上节课我们学习了有理数的乘法,下面我们做几道题:(用课件演示)计算下列各题.并比较它们的结果:1,(-7)×8与8×(-7)[(-2)×(-6)]×5与(-2)×[(-6)×5]2,(-)×(-)与(-)×(-)[×(-)]×(-4)与×[(-
)×(-4)]让学生自由选择其中的一组问题进行计算,然后在组内交流,验证答案的正确性. 让学生复习有理数的乘法运算,给出两组题让学生自由选择以满足不同层次的要求,在形式上用比较的方式,让学生在解题的过程中有目的性地思考,为下面引出运算律作铺垫分析问题探究新知 提出问题:上面我们做的题中,你发现了什么?在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗? 让学生独立思考,然后再进行组内的讨论,交流,最后对组内成员的意见,想法去汇总,由代表汇报讨论的结果,让学生用自己的语言来描述三个运算律并引导学生用字母来表示三个运算律。 学生通过观察思考主动地进行学习,在共同探索,共同发现的过程中分享成功的喜悦。并使学生感受到集体的力量。培养学生的语言表达能力及从特殊到一般的归纳能力应用新知体验成功 出示料书42页例5:用两种方法计算(+-)×12采用大组竞赛的方法,让其中的两个大组采用一般的运算顺序进行计算,另两个大组采用运算律进行计算.出示另一题:(-7)×(-)× 该题不限制计算方法,让学生先思考,再选择运算方法.变式练习:9 ×15.采取小组合作的方法,不限制学生的解题思路. 通过竞赛让学生更深刻地体验到运用运算律可简化运算,同也增强学生的竞争意识与集体荣誉感. 通过上是的比较,学生会选取用这算律来简化运算,形成知识的正迁移.
通过变式练习,让学生在认识层次上有所提高.课堂练习 第42页 小结与作业 课堂小结 1, 有理数乘法的运算及表示方法2, 如何运用运算律来简化运算 本课作业 第46页习题1.4第7题的(1)、(2)、(3)、(6),第8题的(2) 本课教育评注(课堂设计理念,实际教学效果及改进设想) 本节课设计中,着力体现以学生发展为本的思想,创设以学生为中心,利用学生发挥主体作用的课堂教学环境,让学生得到全面的发展.同时使学生能在解决问题的过程中学数学、用数学,而且强调动眼观察、动脑思考,注重多种感官参与,多种心理投人,促进独立思考能力、动手能力等素质的整体发展. 新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验同化和引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析向题.寻找解决问题的途径,获得感性认识,增进学习的趣味性和可接受性.
在对所学知识的应用上,通过题组训练,启发学生积极探索,质疑辨析、及时调整.在教学中,以训练思维为主线,重视概念的提出过程、知识的形成、发展过程,解题思路的探索过程,解题方法和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题,以及用数学语言进行交流的能力. 在教学中,教会学生亲身实践,善于观察,开动脑筋,分析讨论,最后抽象出有价值的理论知识.把握这些知识的本质,学以致用,使传授知识与培养能力融为一体,真正达到本课的教学目标.