1.5有理数的减法
1、叙述有理数加法法则2、两个有理数的和一定大于每一个加数吗?课前复习
我们知道,已知两个数的和与其中一个加数,求另一个加数的运算叫做减法.例如计算(-8)-(-3)也就是求一个数?使(?)+(-3)=-8.回忆新课讲解根据有理数加法运算,有(-5)+(-3)=-8,所以(-8)-(-3)=-5.①减法运算的结果得到了
再做一个填空:(-8)+()=-5,容易得到(-8)+(+3)=-5.②试一试新课讲解比较①、②两式,我们发现:-8“减去-3”与“加上+3”结果是相等的.
10-6=(4),10+(-6)=(4),得10-6=10+(-6).再试一次:新课讲解
考察以上计算后。提问:减法是否都可转化为加法计算?新课讲解启发学生自己得出有理数减法法则:减去一个数等于加上这个数的相反数。
文字:减去一个数,等于加上这个数的相反数字母表示:a-b=a+(-b)(说明:简明的表示方法,体现字母表示数的优越性,实际运算时会更加方便)有理数减法法则新课讲解强调运用法则时:被减数不变,减号变加号,减数变成其相反数减数变号(减法============加法)
(+10)-(+3)=+7(+10)+(-3)=+7有理数加法和减法的比较新课讲解让学生比较上面这两个算式并讨论后得出:(+10)-(+3)=(+10)+(-3)
再给出以下算式:减法加法(+5)-(+2)=+3(+5)+(-2)=+3有理数加法和减法的比较新课讲解继续让学生比较上面这两个算式并讨论后得出:(+5)-(+2)=(+5)+(-2)从而,它启发我们有理数的减法可以转化成加法进行
例计算:6、讲解例题。新课讲解(1)(-32)-(+5);(2)7.3-(-6.8);(3)(-2)-(-25);(4)12-21
(l)问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?补充例题新课讲解解:∵15-5=10,∴15℃比5℃高10℃;∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃比15℃低20℃。
1.下列括号内各应填什么数?(1)(-2)-(-3)=(-2)+();巩固练习(2)0-(-4)=0+();(3)(-6)-3=(-6)+();(4)1-(+39)=1+().
2.进行下列运算,并分析原理:(1)(+5)-(+8);巩固练习(2)(-5)-(-8);(3)(+5)-(-8);(4)(-5)-(+8);(5)(-5)-(+5);(6)(-5)-(+2).
3.填空:(1)温度3℃比-8℃高;巩固练习(2)温度-9℃比-1℃低;(3)海拔高度-20m比-180m高;(4)从海拔22m到-50m,下降了.
1.计算:(1)(-14)-(+15);(2)(-14)-(-16);(3)(+12)-(-9);(4)12-(+17);(5)0-(+52);(6)108-(-11).课外作业
2.计算:(1)[(-4)-(+7)]-(-5);(2)3-[(-3)-12];(3)8-(9-10);(4)(3-5)-(6-10).课外作业
3.某地连续五天内每天的最高气温与最低气温记录如下,哪一天的温差(最高气温与最低气温的差)最大,哪天的温差最小?课外作业
4.某一矿井的示意图如右:以地面为准A点的高度是+4.2米,B、C两点的高度分别是-15.6米与-30.5米。A点比B点高多少?比C点呢?课外作业
5.求出下列每对数在数轴上对应点之间的距离。(1)3与-2.2;(2)-4与-4.5;课外作业你能发现所得的距离与这两数的差有什么关系吗?
本课结束
谢谢再见!