初中数学七年级上册2.3.1有理数的乘法一、教学目标1、关注学生学习的过程,多让学生经历知识发生、规律发现的过程,尽可能让学生活动。2、掌握有理数的乘法法则,会进行有理数的乘法运算。3、了解倒数的概念,理解零没有倒数,学会求一个数的倒数。4、理解几个有理数相乘,积的符号的确定。二、教学重点、难点重点:有理数乘法的运算难点:探索有理数的乘法法则及符号的确定。三、教学过程(一)、创设情景,引入课题1、多媒体显示:一只小虫沿一条东西向的跑道,以每分钟3米的速度向东爬行2分钟。问:(1)小虫现在位于原来位置的哪个方向?与起点相距多少米?可以用怎样的数学式子表示?(生:小虫现在位于原来位置的向东方向6米处,算式为3×2=6)(2)现在我们规定向东为正,向西为负,并将上述问题改变为:小虫向西以每分钟3米的速度爬行2分钟,那么结果有何变化?可以用怎样的算式表示?(生:小虫现在位于原来位置的向西方向6米处,算式为(-3)×2=-6) (3)比较上面两个算式,你有什么发现?(充分让学生讨论,可能有多种多样的发现,可能会发现:两个数相乘,把一个因数换成它的相反数时,所得的积是原来积的相反数,教师给以强调。)(4)想一想3×(-2)=? (-3)×(-2)=?(5)如果有一个因数是0,那么积为多少?(-3)×0=? 0×2=?[引出课题:有理数的乘法](二)交流对话,引出新知2、师:综合以上各种情况,你们发现了什么规律? 充分讨论,归纳出有理数的乘法法则:(板书)①两数相乘,同号得正,异号得负,并把绝对值相乘。②任何数与零相乘,积为零。师:乘法法则是分三种情况叙述的,即同号两数、异号两数.一个数与0相乘。
, 师:以后遇到两个有理数相乘,你会分几步算?强调首先确定符号,再把绝对值相乘。练习 口算3×7,(-3)×(-7),(-3)×7,3×(-7),0×(-7)3、例1、计算(1)(2)(3)分析:本题可以直接利用有理数乘法的法则来进行运算,要先定符号,再算绝对值解:(1)(2)(3)说明:在解答过程中要写出中间过程,(以后可以省略)。练习巩固法则第38页1、(1)(2)(3),3、4、师:从这个例题中,大家有没有发现什么?让学生充分讨论,可能会发现:(1)、(2)小题的结果都是1,在小学里知道:乘积为1的两个数互为倒数,由此得出:有理数倒数的概念(板书):乘积是1的两个有理数互为倒数。如:,所以与互为倒数;(-3)×(-)=1,所以-3与-互为倒数;(-2)×(-)=1,所以-2与-互为倒数。0没有倒数。练习:口答 第38页2、5、两个有理数相乘,先要确定积的符号,然后再确定积的绝对值,那三个有理数相乘怎样呢?(1)积的符号怎样确定呢?想一想:填空(1)4×5×0.25=?(2)(-4)×5×0.25=?(3)(-4)×(-5)×0.25=?(4)(-4)×(-5)×(-0.25)=?(5)(-4)×5×(-0.25)×0=?讨论归纳,总结出多个有理数相乘的规律:几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。(2)几个不等于0的因数相乘时,积的绝对值是多少?(生:积的绝对值是这几个因数的绝对值的乘积.)例2、计算:(1);(2)分析:(1)有多个不为零的有理数相乘时,可以先确定积的符号,再把绝对值相乘;
(2)若其中有一个因数为0,则积为0。解:(1)=(2)=0练习(1),(2),(3)6、探索活动:把-6表示成两个整数的积,有多少种可能性?把它们全部写出来。(三)课堂小结通过本节课的学习,大家学会了什么?(1)有理数的乘法法则。(2)多个不等于0的有理数相乘,积的符号由负因数的个数决定。(3)几个数相乘时,如果有一个因数是0,则积就为0。(4)乘积是1的两个有理数互为倒数。(四)作业:课本38页作业题初中数学七年级上册2.3.2有理数的乘法一、教学目标1、经历探索有理数乘法的运算律的过程,发展学生观察、归纳等能力。2、理解并掌握有理数乘法的运算律:乘法交换律、乘法结合律、分配律。 3、能运用乘法运算律简化计算,进一步提高学生的运算能力。二、教学重点、难点重点:乘法的运算律难点:灵活运用乘法的运算律简化运算。三、教学过程(一)回顾复习,引入课题
1、计算:(3)(-4)×7×0你能说出各题的解答根据吗?叙述有理数的乘法运算的法则是什么?多个不为0的有理数相乘,积的符号怎样确定?有理数的乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘,积为0。几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。2、学生练习:简便计算,并回答根据什么?(1)125×0.05×8×40(小学数学乘法的交换律和结合律.)(2)(小学数学的分配律)3、上题变为(1)(-0.125)×(-0.05)×8×(-40)(2)能否简便计算?也就是小学数学的乘法交换律和结合律、分配律在有理数范围内能否使用?[引出课题:有理数的乘法(二)](二)交流对话,探索新知4、多媒体显示:学生练习:计算下列各题:(1)(-5)×2;(2)2×(-5);(3)[2×(-3)]×(-4);(4)2×[(-3)×(-4)](5);(6)在进行加、减、乘的混合运算时,应注意:有括号时,要先算括号里面的数,没有括号时,先算乘法,后算加减。比较的结果.:(1)与(2);(3)与(4);(5)与(6)的计算结果一样.计算结果一样,说明了什么?生:说明算式相等。即:(1)(-5)×2=2×(-5);(2)[2×(-3)]×(-4)=2×[(-3)×(-4)];(3)=由(1),我们可以得到乘法交换律;由(2),可以得到乘法结合律;由(3),可以得到分配律。师:乘法的运算律在有理数范围内还成立吗?大家每人写一些不同的数据来试一试。(学生活动。)乘法的运算律在有理数范围内成立。5、师生共同归纳:乘法运算律有:乘法的交换律、乘法的结合律、分配律等三条.多媒体显示:乘法的交换律.:两个数相乘,交换因数的位置,积不变;乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;
分配律:一个数与两个数的和相乘,等于把这个数分别与这两数相乘,再把积相加。乘法的交换律和结合律仅涉及一种运算,分配律要涉及两种运算。你能用字母表示乘法的交换律、结合律,分配律吗?如果a、b、c分别表示任一有理数,那么:乘法的交换律:a×b=b×a.乘法的结合律:(a×b)×c=a×(b×c)分配律:a×(b+c)=a×b+a×c 练习:多媒体显示下列各式中用了哪条运算律?如何用字母表示?(1)(-5)×3=3×(-5)(2)[-+]+(-)=(-)+[+(-)](3)(-6)×[+(-)]=(-6)×+(-6)×(-)(4)[29×(-)]×(-12)=29×[(-)×(-12)](5)(-8)+(-9)=(-9)+(-8) 运算律在计算中起到了简化运算的作用.那我们看刚才做的5个题中,计算等号右边比较简便还是计算等号左边比较简便?(略)6、新知应用乘法的运算律在有理数运算中的应用例1、简便计算(1)(-0.125)×(-0.05)×8×(-40)(2) 师生共析(1)题先确定符号,再算绝对值;先用乘法的交换律,然后用结合律进行计算。(2)题用分配律。运用运算律,有时可使运算简便。解:略例2、计算(1)分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01学生板书完成,并说明根据什么?略例3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的,和。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?解:略完成课内练习1、2两题7、探究活动(1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律?(三)课堂小结通过本节课的学习,大家学会了什么?本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.
(四)课内检测(五)课外作业