有理数的乘法
2、如果3分钟以后记为+3分钟,那么3分钟以前应该记为。1、如果一只蜗牛向右爬行2cm记为+2cm,那么向左爬行2cm应该记为。-2cm-3分钟
02468问题一:如果蜗牛一直以每分2cm的速度从O点向右爬行,3分钟后它在点O的边cm处?每分钟2cm的速度向右记为;3分钟以后记为。其结果可表示为。右6+2+3(+2)×(+3)=+6
问题四:如果蜗牛一直以每分2cm的速度向左爬行,现在蜗牛在点O处,3分钟前它在点O边cm处?02468右6每分钟2cm的速度向左记为;3分钟以前记为。其结果可表示为。-2-3(-2)×(-3)=+6
问题二:如果蜗牛一直以每分2cm的速度从O点向左爬行,3分钟后它在点O的边cm处?0-8-6-4-2左6每分钟2cm的速度向左记为;3分钟以后记为。其结果可表示为。-2+3(-2)×(+3)=-6
问题三:如果蜗牛一直以每分2cm的速度向右爬行,现在蜗牛在点O处,3分钟前它在点O的边cm处?0-8-6-4-2左6每分钟2cm的速度向右记为;3分钟以前记为。其结果可表示为。+2-3(+2)×(-3)=-6
(+2)×(+3)=+6(-2)×(+3)=-6(+2)×(-3)=-6(-2)×(-3)=+6正数乘以正数积为数负数乘以正数积为数正数乘以负数积为数负数乘以负数积为数乘积的绝对值等于各因数绝对值的。规律呈现:正负负正积
问题五:如果蜗牛一直以每分钟2cm的速度向右爬行,0分钟后它在什么位置?02468问题六:如果蜗牛一直以每分钟0cm的速度向左爬行,3分钟前它在什么位置?O-8-6-4-2结论:2×0=0结论:0×(-3)=0
乘法算式因数特征积的特征(-2)×(-3)=+6(+2)×(+3)=+6(+2)×(-3)=-6(-2)×(+3)=-6(+2)×0=00×(-3)=0同号异号一个因数为0得正得负得0
归纳有理数的乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘。2、任何数同零相乘,都得零。
法则的应用:(-5)×(-3)(-7)×4=+=15(5×3)=-(7×4)=-28有理数相乘,先确定积的符号,再确定积的绝对值。
小试牛刀(2)×(3)(-12)×(-)(4)(-2)×(-)(1)4×
结论:乘积是1的两个数互为倒数1的倒数为-1的倒数为的倒数为-的倒数为5的倒数为-5的倒数为的倒数为-的倒数为1-13-3-3-3
数学游戏:在整数-5、-3、-1、2、4、6中任取两个数相乘,所得积的最大值与最小值分别是多少?
通过本节课的学习,大家有什么收获呢?
作业:1、习题1.4第2题,第3题2、预习多个有理数相乘的乘法运算
同学们再见!
lO如图,有一只蜗牛沿直线l爬行,它现在的位置恰好在l上的一点O。1、如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它在什么位置?2、如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置?4、如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它在什么位置?3、如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它在什么位置?