数学教案-绝对值教学目标 1.了解绝对值的概念,会求有理数的绝对值; 2.会利用绝对值比较两个负数的大小; 3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力. 教学建议 一、重点、难点分析 绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。 教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。 二、知识结构 绝对值的定义绝对值的表示方法
数学教案-绝对值教学目标 1.了解绝对值的概念,会求有理数的绝对值; 2.会利用绝对值比较两个负数的大小; 3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力. 教学建议 一、重点、难点分析 绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。 教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。 二、知识结构 绝对值的定义绝对值的表示方法
用绝对值比较有理数的大小 三、教法建议 用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即 在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释. 此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出. 四、有关绝对值的一些内容 1.绝对值的代数定义 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零. 2.绝对值的几何定义 在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值. 3.绝对值的主要性质
(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零. (4)两个相反数的绝对值相等. 五、运用绝对值比较有理数的大小 1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小. 比较两个负数的方法步骤是: (1)先分别求出两个负数的绝对值; (2)比较这两个绝对值的大小;
(3)根据“两个负数,绝对值大的反而小”作出正确的判断. 2.两个正数大小的比较,与小学学习的方法一致,绝对值大的较大. 教学设计示例 绝对值(一) 一、素质教育目标 (一)知识教学点 1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念. 2.给出一个数,能求它的绝对值. (二)能力训练点 在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力. (三)德育渗透点 1.通过解释绝对值的几何意义,渗透数形结合的思想. 2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性. (四)美育渗透点 通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美. 二、学法引导 1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律. 2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义) 三、重点、难点、疑点及解决办法 1.重点:给出一个数会求出它的绝对值. 2.难点:绝对值的几何意义,代数定义的导出. 3.疑点:负数的绝对值是它的相反数. 四、课时安排 2课时 五、教具学具准备 投影仪(电脑)、三角板、自制胶片. 六、师生互动活动设计 教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义. 七、教学步骤 (一)创设情境,复习导入 师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点. 学生活动:一个学生板演,其他学生在练习本上画. 【教法说明】绝对值的 绝对值绝对值数学