绝对值及其几何意义绝对值的代数意义:一个正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数。如:|5|=5;|-5|=5;|0|=0绝对值的几何意义:可以借助数轴来加以认识,一个数的绝对值在数轴上表示这个数的点到___________的距离。如a表示数轴上表示数a的点到________的距离,推而广之:∣x-a∣的几何意义是数轴上表示数x的点到表示数______的点之间的距离,∣x-a∣+∣x-b∣的几何意义是数轴上表示数x的点到表示数_______两点的距离之和。对于一些比较复杂的绝对值问题,如果用常规的方法做会比较繁琐,而运用绝对值的几何意义解题,往往能取得事半功倍的效果。例1:已知,∣x-4∣=3,求x的值。解法一(代数法,分类讨论)(“零点分段法”):解法二(几何法):由绝对值的几何意义可知,∣x-4∣=3表示数x的点到_________的距离为_____,结合数轴不难发现这样的点共有______个,分别是____和____,故x=_______.例2:求∣x-1∣+∣x+2∣的最小值。解法一(代数法)(“零点分段法”):
解法二(几何法):由绝对值的几何意义可知,分析:本题若采用“零点分段法”讨论亦能解决,但若运用绝对值的几何意义解题,会显得更加简洁。解:根据绝对值的几何意义可知,∣x-1∣表示数轴上点x到_______的距离,∣x+2∣表示数轴上点x到_________的距离。实际上此题是要在数轴上找一点x,使该点到两点的距离之和最短,由数轴可知,x应在数轴上__________________________________的点,且最短距离为______________,即∣x-1∣+∣x+2∣的最小值为_______。推广:①:∣x-a∣+∣x-b∣的最小值为___________。②∣∣x-a∣-∣x-b∣∣的几何意义是数轴上一点x到a、b两点之间距离之差的绝对值,它有一个最_______(大或小)值________。例3:对于任意实数,若不等式∣∣x+1∣-∣x-2∣∣<k恒成立,则实数k的取值范围是什么?解:(提示:k是式子∣∣x+1∣-∣x-2∣∣的最大值还是最小值?)例4:如果∣x-3∣+∣x+1∣=4,则x的取值范围是什么?解:绝对值的几何意义的运用是一个较好的技巧,这种简捷、巧妙的方法,应引起重视。
绝对值的性质:(1)绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;(2)a=a,a>00,a=0-a,a