绝对值(第一课时)一、素质教育目标 (一)知识教学点 1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念. 2.给出一个数,能求它的绝对值. (二)能力训练点 在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力. (三)德育渗透点 1.通过解释绝对值的几何意义,渗透数形结合的思想. 2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。 (四)美育渗透点 通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美。二、学法引导 1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律。
2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)三、重点、难点、疑点及解决办法 1.重点:给出一个数会求出它的绝对值。 2.难点:绝对值的几何意义,代数定义的导出。 3.疑点:负数的绝对值是它的相反数。四、课时安排 2课时五、教具学具准备 投影仪(电脑)、三角板、自制胶片。六、师生互动活动设计 教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义。七、教学步骤 (一)创设情境,复习导入 师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点。 学生活动:一个学生板演,其他学生在练习本上画. 【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习。
(二)探索新知,导入新课 师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢? 学生活动:思考讨论,很难得出答案。 师:在数轴上标出到原点距离是6个单位长度的点。 学生活动:一个学生板演,其他学生在练习本上做。 师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗? 学生活动:产生疑问,讨论。 师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值。 [板书]2.4绝对值(第一课时) 【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不觉学生已获得了知识。
师:-6的绝对值是表示-6的点到原点的距离,-6的绝对值是6; 6的绝对值是表示6的点到原点的距离,6的绝对值是6。 提出问题:(1)-3的绝对值表示什么? (2)的绝对值呢? (3)的绝对值呢? 学生活动:(1)(2)题根据教师的引导学生口答,(3)题讨论后口答。 [板书]一个数a的绝对值是数轴上表示数a的点到原点的距离。 数a的绝对值是|a| 【教法说明】由-6,6,-3,这些特殊的数的绝对值引出数的绝对值,逐层铺垫,由学生得出绝对值的几何意义,既理解了一个数的绝对值的含义也训练了学生口头表达能力,突破了难点。 (三)尝试反馈,巩固练习 师:数可以表示任意数,若把换成,9,0,-1,-0.4观察数轴,它们的绝对值各是多少? 学生活动:口答:,,,,
师:你在自己画的数轴上标出五个数,让同桌指出它们的绝对值。 学生活动:按教师要求自己又当“小老师”又当“学生”. 教师找一组学生回答,并及时纠正出现的错误。 (出示投影1) 例 求8,-8,,的绝对值. 师:观察数轴做出此题。 学生活动:口答 ,,,. 师:由此题目你能想到什么规律? 学生活动:讨论得出—互为相反数的两数绝对值相同. 【教法说明】这一环节是对绝对值的几何定义的巩固.这里对于绝对值定义的理解不能空谈“5的绝对值、-7的绝对值是多少”?而是与数轴相结合,始终利用表示这数的点到原点的距离是这个数的绝对值这一概念.教师先阐明这个字母可表示任意数,再把换成一组数,学生自己又把换成了一些数,指出它们的绝对值,这样既理解了数所表示的广泛含义,又巩固了绝对值的定义.然后,通过例题总结
出了互为相反数的两数的绝对值相等这一规律,既呼应了前面内容,又升华了绝对值的概念。 师:观察数轴,在原点右边的点表示的数(正数)的绝对值有什么特点? 在原点左边的点表示的数(负数)的绝对值呢? 生:思考,不能轻易回答出来。 师:再看前面我们所求的,,,,.你能得出什么规律吗? 学生活动:思考后一学生口答。 教师纠正并板书: [板书]正数的绝对值是它本身。 负数的绝对值是它的相反数。 0的绝对值是0。 师:字母可表示任意的数,可以表示正数,也可以表示负数,也可以表示0。 教师引导学生用数学式子表示正数、负数、0,并再提问:这时的绝对值分别是多少? 学生活动:分组讨论,教师加入讨论,学生互相补充回答。 教师板书: [板书] 若,则 若,则
若,则 师强调:这种表示方法就相当于前面三句话,比较起来后者更通俗易懂。 【教法说明】用字母表示规律是难点.这时教师放手,让学生有目的地考虑、分析,共同得出结论。 巩固练习: (出示投影2) 1.化简:,,. ,,; 2.计算:①. ②. ③. 学生活动:1题口答,2题自己演算,三个学生板演。 【教法说明】1题的前四个旨在直接运用绝对值的性质,后两个略有加深,需要讨论后回答;2题(3)小题让学生区别绝对值符号和括号的不同含义。 (四)归纳小结 师:这节课我们学习了绝对值。 (1)一个数的绝对值是在数轴上表示这个数的点到原点的距离; (2)求一个数的绝对值必须先判断是正数还是负数。
回顾反馈: (出示投影3) 1.-3的绝对值是在_____________上表示-3的点到__________的距离,-3的绝对值是____________。 2.绝对值是3的数有____________个,各是___________; 绝对值是2.7的数有___________个,各是___________; 绝对值是0的数有____________个,是____________。 绝对值是-2的数有没有? (总结:) 3.(1)若,则; (2)若,则. 【教法说明】教师在总结完本节课的知识要点后,再回头对本节重点内容进行反馈练习,并且注意把知识进行升华。八、随堂练习 1.判断题 (1)数的绝对值就是数轴上表示数的点与原点的距离( ) (2)负数没有绝对值( ) (3)绝对值最小的数是0( ) (4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大( )
(5)如果数的绝对值等于,那么一定是正数()2.填表原数3相反数-6绝对值0倒数3.填空(1);(2);(3);(4);(5)若,则;(6).九、布置作业 课本第66页2、4。