5-4-2.约数与倍数(二)教学目标1.本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用.2.本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;☆☆☆(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为△△△...的结构,而且表达形式唯一”知识点拨一、约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a能被整数b整除,a叫做b的倍数,b就叫做a的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1.求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.22例如:2313711,252237,所以(231,252)3721;21812②短除法:先找出所有共有的约数,然后相乘.例如:396,所以(12,18)236;32③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:15156002315;6003151285;315285130;28530915;301520;所以1515和600的最大公约数是15.2.最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.3.求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a;求出各个分数的分子的最b大公约数b;即为所求.a4.约数、公约数最大公约数的关系1
(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数.1.求最小公倍数的方法①分解质因数的方法;2222例如:2313711,252237,所以231,252237112772;②短除法求最小公倍数;21812例如:396,所以18,12233236;32ab③[a,b].(a,b)2.最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数.②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.3.求一组分数的最小公倍数方法步骤b先将各个分数化为假分数;求出各个分数分子的最小公倍数a;求出各个分数分母的最大公约数b;即为a35[3,5]15所求.例如:[,]412(4,12)4141,4注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:,4232,34.倍数、公倍数、最小公倍数的关系(1)倍数是对一个数说的;(2)最小公倍数是公倍数的约数,公倍数是最小公倍数的倍数三、最大公约数与最小公倍数的常用性质1.两个自然数分别除以它们的最大公约数,所得的商互质.如果m为A、B的最大公约数,且Ama,Bmb,那么a、b互质,所以A、B的最小公倍数为mab,所以最大公约数与最小公倍数有如下一些基本关系:①ABmambmmab,即两个数的最大公约数与最小公倍数之积等于这两个数的积;②最大公约数是A、B、AB、AB及最小公倍数的约数.2.两个数的最大公约和最小公倍的乘积等于这两个数的乘积.即(a,b)[a,b]ab,此性质比较简单,学生比较容易掌握.3.对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数例如:567210,210就是567的最小公倍数2
b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍例如:678336,而6,7,8的最小公倍数为3362168性质(3)不是一个常见考点,但是也比较有助于学生理解最小公倍数与数字乘积之间的大小关系,即“几个数最小公倍数一定不会比他们的乘积大”.四、求约数个数与所有约数的和1.求任一整数约数的个数一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积.32如:1400严格分解质因数之后为257,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和1400本身)约数个数的计算公式是本讲的一个重点和难点,授课时应重点讲解,公式的推导过程是建立在开篇讲过的数字“唯一分解定理”形式基础之上,结合乘法原理推导出来的,不是很复杂,建议给学生推导并要求其掌握.难点在于公式的逆推,有相当一部分常考的偏难题型考察的就是对这个公式的逆用,即先告诉一个数有多少个约数,然后再结合其他几个条件将原数“还原构造”出来,或者是“构造出可能的最值”.2.求任一整数的所有约数的和一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和.33如:210002357,所以21000所有约数的和为2323(1222)(13)(1555)(17)74880此公式没有第一个公式常用,推导过程相对复杂,需要许多步提取公因式,建议帮助学生找规律性的记忆即可.例题精讲模块一、倍数【例1】N为自然数,且N1,N2、……、N9与690都有大于l的公约数.N的最小值为多少?模块二、公倍数与最小公倍数综合【例2】有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃.中午12点整,电子钟响铃又亮灯.问:下一次既响铃又亮灯是几点钟?【例3】甲、乙两人同时从A点背向出发,沿400米的环形跑道行走,甲每分钟走80米,乙每分钟走50米,两人至少经过多长时间才能在A点相遇?3
【例4】动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得多少粒?【巩固】加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?(假设这三道工序可以同时进行)【例5】在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成10等份,第二种刻度线把木棍分成12等份,第三种刻度线把木棍分成15等份,如果沿每条刻度线把木棍锯断,木棍总共被锯成多少段?【例6】大雪后的一天,小明和爸爸同时步测一个圆形花圃的周长,他俩的起点和步行方向完全相同,小明每步长54厘米,爸爸每步长72厘米.由于两人脚印有重合的,所以各走完一圈后,雪地上留下60个脚印.求圆形花圃的周长.【例7】一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右到左1至6报数.两次都报3的恰有5名,这列士兵最多有名.【例8】有甲、乙、丙三个人在操场跑道上步行,甲每分钟走80米,乙每分钟走120米,丙每分钟走70米.已知操场跑道周长为400米,如果三个人同时同向从同一地点出发,问几分钟后,三个人可以首次相聚?4
【例9】如图,A、B、C是三个顺次咬和的齿轮,当A转4圈时,B恰好转3圈:当B转4圈时,C恰好转5圈,则A、B、C的齿数的最小数分别是多少?ACB【例10】有一对紧贴的传动胶轮,每个轮子上都画有一条通过轴心的标志线(如下图).主动轮的半径是105厘米,从动轮的半径是90厘米.开始转动时,两个轮子上的标志线在一条直线上.问:主动轮至少转了几转后,两轮的标志线又在一条直线上?111【例11】一次考试,参加的学生中有得优,得良,得中,其余的得差,已知参加考试的学生不满50人,那732么得差的学生有多少人?111【巩固】一次考试,参加的学生中有得优,得良,得中,其余的得差,已知参加考试的学生不满100人,那743么得差的学生有多少人?【例12】3条圆形跑道,圆心都在操场中的旗杆处,甲、乙、丙3人分别在里圈、中圈、外圈沿同样的方向113跑步.开始时,3人都在旗杆的正东方向,里圈跑道长千米,中圈跑道长千米,外圈跑道长千米.甲5485
1每小时跑3千米,乙每小时跑4千米,丙每小时跑5千米.问他们同时出发,几小时后,3人第一次2同时回到出发点?【例13】两个自然数a,b的最小公倍数等于50,问a+b有多少种可能的数值?【例14】已知a,b,c是三个自然数,且a与b的最小公倍数是60,a与c的最小公倍数是270.求b与c的最小公倍数.【例15】甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?【例16】a>b>c是3个整数.a,b,c的最大公约数是15;a,b的最大公约数是75;a,b的最小公倍数是450;b,c的最小公倍数是1050.那么c是多少?6
【例17】如图,鼹鼠和老鼠分别从长157米的小路两端A、B开始向另一端挖洞.老鼠对鼹鼠说:“你挖完后,我再挖.”这样一来,由于老鼠原来要挖的一些洞恰好也是鼹鼠要挖的洞,所以老鼠可以少挖多少个洞?【例18】如图,在长500米、宽300米的长方形广场的外围,每隔2.5米摆放一盆花,现要改为每隔2米摆放一盆花,并且广场的4个顶点处的花盆不动,则需增加___盆花;在重新摆放花盆时,共有___盆花不用挪动.【例19】有一些小朋友排成一行,从左面第一人开始每隔2人发一个苹果;从右面第一人开始每隔4人发一个桔子,结果有10个小朋友苹果和桔子都拿到.那么这些小朋友最多有多少人?7