最大公约数和最小公倍数应用题应用最大公约数与最小公倍数方法求解的应用题,叫做公约数与人数公倍数问题。解题的关键是先求出几个数的最大公约数或最小公倍数,然后按题意解答要求的问题。例1、有三根铁丝,一佷长18米,一根长24米,一根长30米。现在要把它们截成同样长的小段。每段最长可以有几米?一共可以截成多少段?截成的小段一定是18、24、30的最大公约数。先求这三个数的最大公约数,再求一共可以截成多少段。(18、24、30)=6(18+24+30)÷6=12段例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少正方形?要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公约数。(36、60)=12(60÷12)×(36÷12)=15个例3、用96朵红玫瑰花和72朵白玫瑰花做花束。如每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?要把96朵红玫瑰花和72朵白玫瑰花做花束,每束花里的红白花朵数同样多,那么做成花束的的个数一定是96和72的公约数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公约数>1、最多可以做多少个花束(96、72)=242、每个花束里有几朵红玫瑰花96÷24=4朵3、每个花束里有几朵白玫瑰花72÷24=3朵4、每个花束里最少有几朵花4+3=7朵例4、公共汽车站有三路汽车通往不同的地方。第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。三路汽车在同一时间发车以后,最少过多少分钟再同时发车?这个时间一定是5的倍数、10的倍数、6的倍数,也就是说是5、10和6的公倍数,“最少多少时间”,那么,一定是5、10、6的最小公倍数。[5、10、6]=30例5、某厂加工一种零件要经过三道工序。第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完12个;第三道工序每个工人每小时可完成5个。要使流水线能正常生产,各道工序每小时至少安适几个工人最合理?安排每道工序人力时,应使每道工序在相同的时间内完成同样多的零件个数。这个零件个数一定是每道工序每人每小时完成零件个数的公倍数。至少安排的人数,一定是每道工序每人每小时完成零件个数的最小公倍数。1、
在相同的时间内,每道工序完成相等的零件个数至少是多少?[3、12、5]=602、第一道工序应安排多少人60÷3=20人3、第二道工序应安排多少人60÷12=5人4、第三道工序应安排多少人60÷5=12人例6、有一批机器零件。每12个放一盒,就多出11个;每18个放一盒,就少1个;每15个放一盒,就有7盒各多2个。这些零件总数在300至400之间。这批零件共有多少个?每12个放一盒,就多出11个,就是说,这批零件的个数被12除少1个;每18个放一盒,就少1个,就是说,这批零件的个数被18除少1;每15个放一盒,就有7盒各多2个,多了2×7=14个,应是少1个。也就是说,这批零件的个数被15除也少1个。如果这批零件的个数增加1,恰好是12、18和15的公倍数。1、刚好能12个、18个或15个放一盒的零件最少是多少个[12、18、15]=1802、在300至400之间的180的倍数是多少180×2=3603、这批零件共有多少个360-1=359个例7、一个数除193余4,除1089余9。这个数最大是多少?这个数除(193-4),没有余数,这个数除(1089-9)没有余数。这个数一定是(193-4)和(1089-9)的公约数。要求这个数最大,那么一定是这两个数的最大公约数。193-4=1891089-9=1080(189、1080)=27例8、公路上一排电线杆,共25根。每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动?不需要移动的电线杆,一定既是45的倍数又是60的倍数。要先求45和60的最小公倍数和这条公路的全长,再求可以有几根不需要移动。1、从第一根起至少相隔多少米的一根电线杆不需移动?[45、60]=1802、全路长多少米?45×(25-1)=1080米3、可以有几根不需要移动?1080÷180+1=7米