关于公倍数和公因数占明磊公因数和公倍数的应用题与生活有着密切联系。解决此类问题,首先要审清题意,读懂题目的实质。在求出最大公因数和最小公倍数的基础上作一些深入的研究,加强对比练习,帮助学生解决问题。例如:(1)小明的书房长2.7米,宽2.25米,他准备在地上贴上一层正方形地砖,至少需要多少地砖?思路:用若干块正方形地砖正好可以沿书房的长铺一排,所以,所用正方形地砖的边长就是小明家书房长的因数,也就是说,地砖的边长必须是书房长与宽的公因数。题中问所铺的地砖应尽可能大,即用长和宽的最大公因数作为边长来铺,所需块数最少:(270÷45)×(225÷45)=30(块)(2)有一种地砖的长是25厘米,宽是20厘米。现在打算用这种地砖铺一块正方形地,最小需要多少块这样的地砖?长方形地砖所铺大正方形的边长既是地砖长的倍数,也是地砖宽的倍数,25和20的公倍数有100、200、300、……所以只要边长是上述厘米数的正方形都可以用这种地砖铺成。题目要求所铺正方形边长最小,边长必须是地砖长25厘米和宽是20厘米的最小公倍数100厘米,(100÷25)×(100÷20)=20(块),所以,至少需要用20块这样的地砖。比较:上面两题都是用地砖铺地,不同之处在于,问题(1)是在固定的面积上铺正方形砖,这实际上是把大长方形分成小正方形,侧重一个“分”字。所用地砖的边长越大,需要的块数越少,所用地砖边长最大是这块长方形地长与宽的最大公因数。问题(2)则是用若干个同样的长方形拼成正方形,侧重一个“拼”字,所拼的正方形边长是地砖长与宽的公倍数,其中面积最小的是正方形的边长就是所用地砖长与宽的最小公倍数。公因数和公倍数的应用题与生活有着密切联系。解决此类问题,首先要审清题意,读懂题目的实质。在求出最大公因数和最小公倍数的基础上作一些深入的研究,加强对比练习,帮助学生解决问题。例如:(1)小明的书房长2.7米,宽2.25米,他准备在地上贴上一层正方形地砖,至少需要多少地砖?思路:用若干块正方形地砖正好可以沿书房的长铺一排,所以,所用正方形地砖的边长就是小明家书房长的因数,也就是说,地砖的边长必须是书房长与宽的公因数。题中问所铺的地砖应尽可能大,即用长和宽的最大公因数作为边长来铺,所需块数最少:(270÷45)×(225÷45)=30(块)(2)有一种地砖的长是25厘米,宽是20厘米。现在打算用这种地砖铺一块正方形地,最小需要多少块这样的地砖?长方形地砖所铺大正方形的边长既是地砖长的倍数,也是地砖宽的倍数,25和20的公倍数有100、200、300、……所以只要边长是上述厘米数的正方形都可以用这种地砖铺成。题目要求所铺正方形边长最小,边长必须是地砖长25厘米和宽是20厘米的最小公倍数100厘米,(100÷25)×(100÷20)=20(块),所以,至少需要用20块这样的地砖。比较:上面两题都是用地砖铺地,不同之处在于,问题(1)是在固定的面积上铺正方
形砖,这实际上是把大长方形分成小正方形,侧重一个“分”字。所用地砖的边长越大,需要的块数越少,所用地砖边长最大是这块长方形地长与宽的最大公因数。问题(2)则是用若干个同样的长方形拼成正方形,侧重一个“拼”字,所拼的正方形边长是地砖长与宽的公倍数,其中面积最小的是正方形的边长就是所用地砖长与宽的最小公倍数